【題目】已知數(shù)列中,前項和為,若對任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.
(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項和;
(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對一切,恒成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請說明理由;
(3)若數(shù)列為“數(shù)列”,且,證明:.
【答案】(1);(2)見解析;(3)見解析.
【解析】試題分析:(1)由和項與通項關(guān)系得,再根據(jù)等比數(shù)列定義以及等比數(shù)列求和公式求結(jié)果,(2)由和項與通項關(guān)系得,代入化簡得,即得,再化為,解得的所有可能值,(3)由和項與通項關(guān)系得,根據(jù)條件可得數(shù)列不減,得,疊放得,從而,而,所以得證.
試題解析:(1)數(shù)列為“數(shù)列”,則,故,
兩式相減得:,
又時,,所以
故對任意的恒成立,即(常數(shù)),
故數(shù)列為等比數(shù)列,其通項公式為;
.
(2)
當(dāng)時,
因為,則;
則
則,因為
則
因為,則,且時,,
解得:.
(3)
,由歸納知,,
,由歸納知,,
則
于是
于是
,∴
結(jié)論顯然成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的方程是: ,以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)過原點的直線與曲線交于, 兩點,且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王老師的班上有四個體育健將甲、乙、丙、丁,他們都特別擅長短跑,在某次運動會上,他們四人要組成一個米接力隊,王老師要安排他們四個人的出場順序,以下是他們四人的對話:
甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;。喝绻也慌艿诙,我就不跑第一棒;
王老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場順序中,跑第三棒的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線.
(1)求以右焦點為圓心,與雙曲線的漸近線相切的圓的方程;
(2)若經(jīng)過點的直線與雙曲線的右支交于不同兩點、,求線段的中垂線在軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·臨川一中]海盜船是一種繞水平軸往復(fù)擺動的游樂項目,因其外形仿照古代海盜船而得名.現(xiàn)有甲、乙兩游樂場統(tǒng)計了一天6個時間點參與海盜船游玩的游客數(shù)量,具體數(shù)據(jù)如表:
時間點 | 8點 | 10點 | 12點 | 14點 | 16點 | 18點 |
甲游樂場 | 10 | 3 | 12 | 6 | 12 | 20 |
乙游樂場 | 13 | 4 | 3 | 2 | 6 | 19 |
(1)從所給6個時間點中任選一個,求參與海盜船游玩的游客數(shù)量甲游樂場比乙游樂場少的概率;
(2)記甲、乙兩游樂場6個時間點參與海盜船游玩的游客數(shù)量分別為,(),現(xiàn)從該6個時間點中任取2個,求恰有1個時間點滿足的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科學(xué)研究證實,二氧化碳等溫空氣體的排放(簡稱碳排放)對全球氣候和生態(tài)環(huán)境產(chǎn)生了負(fù)面影響,環(huán)境部門對市每年的碳排放總量規(guī)定不能超過萬噸,否則將采取緊急限排措施.已知市年的碳排放總量為萬噸,通過技術(shù)改造和倡導(dǎo)低碳生活等措施,此后每年的碳排放量比上一年的碳排放總量減少.同時,因經(jīng)濟(jì)發(fā)展和人口增加等因素,每年又新增加碳排放量萬噸.
(1)求市年的碳排放總量(用含的式子表示);
(2)若市永遠(yuǎn)不需要采取緊急限排措施,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,過點的直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,記直線與曲線分別交于兩點.
(1)求曲線和的直角坐標(biāo)方程;
(2)證明:成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為慶祝成立二十周年,特舉辦《快樂大闖關(guān)》競技類有獎活動,該活動共有四關(guān),由兩名男職員與兩名女職員組成四人小組,設(shè)男職員闖過一至四關(guān)概率依次是,女職員闖過一至四關(guān)的概率依次是
(1)求女職員闖過四關(guān)的概率;
(2)設(shè)表示四人小組闖過四關(guān)的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com