將函數(shù)y=sin(2x-
π
3
)
的圖象向左平移φ(φ>0)個單位,得到的圖象對應(yīng)的函數(shù)為f(x),若f(x)為奇函數(shù),則φ的最小值為
 
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得f(x)=sin(2x+2φ-
π
3
),再根據(jù)正弦函數(shù)是奇函數(shù),可得 2φ-
π
3
=kπ,k∈z,由此求得φ的最小正值.
解答: 解:將函數(shù)y=sin(2x-
π
3
)的圖象向左平移φ(φ>0)個單位,
得到的圖象對應(yīng)的函數(shù)為f(x)=sin[2(x+φ)-
π
3
]=sin(2x+2φ-
π
3
),
若f(x)為奇函數(shù),則有 2φ-
π
3
=kπ,k∈z,即 φ=
1
2
kπ+
π
6
,
∴φ的最小正值為
π
6
,
故答案為:
π
6
點評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的奇偶性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

a3-2a2-a+7=5,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某算法的程序如圖所示,若輸入x=2,則電腦屏上顯示的結(jié)果為( 。
A、16B、4C、y=0D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式(x+1)[(a-1)x-1]>0,a∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),f(x)=sin(ωx+
π
3
)且f(
π
6
)=1.
(1)求ω的最小正值及此時函數(shù)y=f(x)的表達式;
(2)將(1)中所得函數(shù)y=f(x)的圖象結(jié)果怎樣的變換可得y=
1
2
sin
1
2
x的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖的程序框圖,若輸入的n是100,則輸出的變量S的值是( 。 
A、5 049
B、5 050
C、5 051
D、5 052

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班級甲乙兩個小組各9名同學(xué)的期中考試數(shù)學(xué)成績 (單位:分)的莖葉圖如圖
(1)求甲乙兩組數(shù)學(xué)成績的中位數(shù);
(2)根據(jù)莖葉圖試從平均成績和穩(wěn)定性方面對
兩個小組的數(shù)學(xué)成績作出評價;
(3)記數(shù)學(xué)成績80分及以上為優(yōu)秀,現(xiàn)從甲組這9名同學(xué)中隨機抽取兩名分數(shù)不低于70分的同學(xué),求兩位同學(xué)均獲得優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:2x-y+3=0則點 P(1,-1)在直線的
 
方.(填上、下)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與直線x-y-2=0平行,且經(jīng)過直線x-2=0與直線x+y-1=0的交點的直線方程是
 

查看答案和解析>>

同步練習(xí)冊答案