18.已知函數(shù)y=-cos(x+$\frac{π}{3}$)+2按向量$\overrightarrow{a}$平移所得圖象的解析式為y=f(x),當(dāng)y=f(x)為奇函數(shù),向量$\overrightarrow{a}$可以是(-$\frac{π}{6}$,-2).

分析 由條件利用誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:把函數(shù)y=-cos(x+$\frac{π}{3}$)+2=cos($\frac{2π}{3}$-x)+2=cos(x-$\frac{2π}{3}$)+2的圖象向左平移$\frac{π}{6}$個單位,
可得y=cos(x-$\frac{π}{2}$)+2=sinx+2的圖象;
再把所得圖象向下平移2個單位,可得f(x)=sinx的圖象,且f(x)為奇函數(shù).
故函數(shù)y=-cos(x+$\frac{π}{3}$)+2按向量$\overrightarrow{a}$平移所得圖象的解析式為y=f(x),當(dāng)y=f(x)為奇函數(shù),
故向量$\overrightarrow{a}$=(-$\frac{π}{6}$,-2),
故答案為:(-$\frac{π}{6}$,-2).

點評 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個三角函數(shù)的名稱,是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.化簡:${({\frac{2}{3}})^0}+{2^{-2}}×{({\frac{9}{16}})^{-\frac{1}{2}}}+(lg8+lg125)$=$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)計算:${2^{{{log}_2}}}^{\frac{1}{4}}-{({\frac{8}{27}})^{-\frac{2}{3}}}+lg\frac{1}{100}+{(\sqrt{2}-1)^{lg1}}$
(2)已知角α頂點在原點,始邊與x軸非負半軸重合,終邊在函數(shù)y=-3x(x≤0)的圖象上.求$\frac{4sinα-2cosα}{3sinα+5cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示的程序框圖,運行相應(yīng)的程序,則輸出a的值為( 。
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的周期:
(1)y=sin3x,x∈R;
(2)y=3sin$\frac{x}{4}$,x∈R;
(3)y=2sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個球內(nèi)有一內(nèi)接長方體,其長、寬、高分別為5,4,3,則球的半徑為( 。
A.5$\sqrt{2}$B.2$\sqrt{5}$C.$\sqrt{5}$D.$\frac{5\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.先把函數(shù)y=f(x)的圖象向右移$\frac{π}{6}$個單位,再把橫坐標(biāo)伸長到原來的2倍,再把縱坐標(biāo)縮短到原來的$\frac{2}{3}$,所得圖象的解析式是y=2sin($\frac{1}{2}$x+$\frac{π}{3}$),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求證:$\frac{cos(10π+α)sinα}{sin(-α-2π)cos(-π-α)cos(π+α)}$=-$\frac{1}{cosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x是三角形的內(nèi)角,且sinx-cos(x-π)=$\frac{1}{5}$,則cos2x=-$\frac{7}{25}$.

查看答案和解析>>

同步練習(xí)冊答案