精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知AB⊥平面BCD,BC⊥CD,AD與平面BCD所成的角為30°,且AB=BC=2;
(1)求三棱錐A﹣BCD的體積;
(2)設M為BD的中點,求異面直線AD與CM所成角的大。ńY果用反三角函數值表示).

【答案】
(1)解:如圖,因為AB⊥平面BCD,

所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,

因為AB⊥平面BCD,AD與平面BCD所成的角為30°,故∠ADB=30°,

由AB=BC=2,得AD=4,AC=2

∴BD= =2 ,CD= =2

則VABCD= = =

=


(2)解:以C為原點,CD為x軸,CB為y軸,過C作平面BCD的垂線為z軸,

建立空間直角坐標系,

則A(0,2,2),D(2 ,0,0),C(0,0,0),B(0,2,0),M( ),

=(2 ,﹣2,﹣2), =( ),

設異面直線AD與CM所成角為θ,

則cosθ= = =

θ=arccos

∴異面直線AD與CM所成角的大小為arccos


【解析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱錐A﹣BCD的體積.(2)以C為原點,CD為x軸,CB為y軸,過C作平面BCD的垂線為z軸,建立空間直角坐標系,由此能求出異面直線AD與CM所成角的大小.
【考點精析】認真審題,首先需要了解異面直線及其所成的角(異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現兩條異面直線間的關系).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)在定義域R上的導函數為f′(x),若方程f'(x)=0無解,且f[f(x)﹣2017x]=2017,當g(x)=sinx﹣cosx﹣kx在[﹣ , ]上與f(x)在R上的單調性相同時,則實數k的取值范圍是(
A.(﹣∞,﹣1]
B.(﹣∞, ]
C.[﹣1, ]
D.[ ,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 有且僅有四個不同的點關于直線y=1的對稱點在直線kx+y﹣1=0上,則實數k的取值范圍為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xoy中,過橢圓 右焦點的直線 交橢圓C于M,N兩點,P為M,N的中點,且直線OP的斜率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設另一直線l與橢圓C交于A,B兩點,原點O到直線l的距離為 ,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果對一切實數x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,則實數a的取值范圍是(
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2 ]
D.[﹣3,3]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知無窮數列{an}的各項都是正數,其前n項和為Sn , 且滿足:a1=a,rSn=anan+1﹣1,其中a≠1,常數r∈N;
(1)求證:an+2﹣an是一個定值;
(2)若數列{an}是一個周期數列(存在正整數T,使得對任意n∈N* , 都有an+T=an成立,則稱{an}為周期數列,T為它的一個周期,求該數列的最小周期;
(3)若數列{an}是各項均為有理數的等差數列,cn=23n1(n∈N*),問:數列{cn}中的所有項是否都是數列{an}中的項?若是,請說明理由,若不是,請舉出反例.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數f(x)=cos(ωx+φ)(ω>0,﹣ <φ< )圖象上每一點的橫坐標伸長為原來的2倍(縱坐標不變),再向右平移 個單位長度得到y(tǒng)=cosx的圖象,則函數f(x)的單調遞增區(qū)間為(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ﹣ ,kπ﹣ ](k∈Z)
C.[4kπ﹣ ,kπ﹣ ](k∈Z)
D.[4kπ﹣ ,kπ+ ](k∈Z)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓C1 =1(a>b>0)的離心率為 ,x軸被曲線C2:y=x2﹣b截得的線段長等于C1的長半軸長.
(Ⅰ)求C1 , C2的方程;
(Ⅱ)設C2與y軸的交點為M,過坐標原點O的直線l與C2相交于點A、B,直線MA,MB分別與C1相交于D,E.
(i)證明:MD⊥ME;
(ii)記△MAB,△MDE的面積分別是S1 , S2 . 問:是否存在直線l,使得 = ?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2c﹣a)cosB﹣bcosA=0.
(Ⅰ)求角B的大;
(Ⅱ)求 sinA+sin(C﹣ )的取值范圍.

查看答案和解析>>

同步練習冊答案