函數(shù)y=ax3-x2+cx(a≠0)的圖象如圖所示,它與x軸僅有兩個公共點O(0,0)與A(xA,0)(xA>0);(1)用反證法證明常數(shù)c≠0;(2)如果數(shù)學公式,求函數(shù)的解析式.

解:(1)假設c=0,則y=ax3-x2=x2(ax-1);
這與圖象所給的:
當0<x<xA時,f(x)>0矛盾,∴c≠0
(2)由(1)知c≠0,∴y=x(ax2-x+c)
∵圖象與x軸僅有兩個公共點,
∴方程ax2-x+c=0(a≠0)有二等根
由韋達定理,∴,∴
分析:(1)根據(jù)反證明法的證明方法,先假設c=0,則y=ax3-x2=x2(ax-1),這與圖象所給的矛盾,從而得出c≠0;
(2)由(1)知c≠0,得出y=x(ax2-x+c),圖象與x軸僅有兩個公共點,得出方程ax2-x+c=0(a≠0)有二等根
由韋達定理列出關于a,c.的方程,解之即可.
點評:本小題主要考查函數(shù)的圖象與圖象變化、函數(shù)解析式的求解及常用方法等基礎知識,考查運算求解能力,考查數(shù)形結合思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)函數(shù)y=ax3-x2+cx(a≠0)的圖象如圖所示,它與x軸僅有兩個公共點O(0,0)與A(xA,0)(xA>0);(1)用反證法證明常數(shù)c≠0;(2)如果xA=
12
,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=ax3+bx2+cx+d(a≠0)的導函數(shù)為y=3ax2+2bx+c,不妨把方程y=3ax2+2bx+c=0稱為導方程,其判別式△=4(b2-3ac),若△>0,設其兩根為x1,x2,則當a<0,△≤0時,三次函數(shù)的圖象是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列命題中假命題的序號是
①④
①④

①x=0是函數(shù)y=x3的極值點;
②三次函數(shù)f(x)=ax3+bx2+cx+d有極值點的充要條件是b2-3ac>0;
③奇函數(shù)f(x)=mx3+(m-1)x2+48(m-2)x+n在區(qū)間(-4,4)上單調(diào)遞減.
④若雙曲線的漸近線方程為y=±
3
x
,則其離心率為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•株洲模擬)已知函數(shù)f(x)=ax3+bx2+cx(a≠0,x∈R)為奇函數(shù),且f(x)在x=1處取得極大值2.
(1)求y=f(x)的解析式;
(2)記g(x)=
f(x)x
+(k+1)lnx
,求函數(shù)y=g(x)的單調(diào)區(qū)間;
(3)設h(x)=x2-2bx+4,若對任意x1∈[-2,1],?x2∈[1,2]使f(x1)≥h(x2),求b的取值范圍.

查看答案和解析>>

同步練習冊答案