某幾何體的正視圖與側(cè)視圖如圖所示,若該幾何體的體積為,則該幾何體的俯視圖可以是( )

A.
B.
C.
D.
【答案】分析:由正視圖與側(cè)視圖可知,這是一個錐體,根據(jù)所給的錐體的體積和錐體的高,得到這個錐體的底面面積的值,根據(jù)面積確定圖形,這是選擇題目特有的方法.
解答:解:由正視圖與側(cè)視圖可知,這是一個錐體,
根據(jù)錐體的體積是=
∴s=1,
即底面面積是1,
在所給的四個圖形中,只有正方形是一個面積為1的圖形,
故選D.
點評:本題考查由幾何體確定俯視圖,本題是一個基礎(chǔ)題,題目的解決方向非常明確,只要得到一個底面面積是1的圖形就可以.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆湖南省張家界市高一下學(xué)期期末聯(lián)考數(shù)學(xué)試卷B(解析版) 題型:解答題

如圖示,給出的是某幾何體的三視圖,其中正視圖與側(cè)視圖都是邊長為2的正三角形,俯視圖為半徑等于1的圓.試求這個幾何體的體積與側(cè)面積.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=;

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(2)求出的線性回歸方程預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

(文)已知某幾何體的俯視圖是如圖8所示的矩形,正視圖(或稱主視圖)是一個底邊長為8、高為4的等腰三角形,側(cè)視圖(或稱左視圖)是一個底邊長為6、高為4的等腰三角形.

圖8

(1)求該幾何體的體積V;

(2)求該幾何體的側(cè)面積S.

查看答案和解析>>

同步練習(xí)冊答案