已知函數(shù)
⑴若的定義域和值域均是,求實(shí)數(shù)的值;
⑵若在上是減函數(shù),且對任意的,總有≤,求實(shí)數(shù)的取值范圍.
【解析】(1)先對函數(shù)配方,找出對稱軸,明確單調(diào)性,再利用函數(shù)最值求解.
(2)在(1)的基礎(chǔ)上,由a≥2,明確對稱軸x=a∈[1,1+a]且(a+1)-a≤a-1,從而明確了單調(diào)性,再求最值.利用絕對值的性質(zhì),即得結(jié)果.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052523475947037509/SYS201205252349449384888796_DA.files/image001.png">
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052523475947037509/SYS201205252349449384888796_DA.files/image002.png">,∴f(x)在[1,a]上是減函數(shù),所以,解得.
(2)對稱軸,∵單調(diào)遞減 ∴,
∵,,,
∴在,
,∴
,又,∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練7練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+2)=f(x).當(dāng)0≤x≤1時(shí),f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖象在[0,2]內(nèi)恰有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的值是( )
(A)0 (B)0或-
(C)-或- (D)0或-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆江蘇省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)
已知函數(shù),若為定義在R上的奇函數(shù),則(1)求實(shí)數(shù)的值;(2)求函數(shù)的值域;(3)求證:在R上為增函數(shù);(4)若m為實(shí)數(shù),解關(guān)于的不等式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣西高三下學(xué)期模擬考試(四)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)()是定義在上的奇函數(shù),且時(shí),函數(shù)取極值1.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)令,若(),不等式恒成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三元月雙周練習(xí)數(shù)學(xué)試卷 題型:解答題
(本小題滿分16分)已知函數(shù)的圖象在上連續(xù)不斷,定義:
,
其中,表示函數(shù)在區(qū)間上的最小值,表示函數(shù)在區(qū)間上的最大值.若存在最小正整數(shù),使得對任意的成立,則稱函數(shù)為區(qū)間上的“階收縮函數(shù)”.
(1)若,試寫出的表達(dá)式;
(2)已知函數(shù)試判斷是否為上的“階收縮函數(shù)”,如果是,求出相應(yīng)的;如果不是,請說明理由;
(3)已知函數(shù)是上的2階收縮函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省溫州八校高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題
本題滿分10分)
已知函數(shù)
(1)判斷的單調(diào)性并用定義證明;
(2)設(shè),若對任意,存在(),使,求實(shí)數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com