(2013•臨沂二模)若△ABC的邊a、b、c,a2+b2-c2=4,c滿足且C=60°,則ab的值為
4
4
分析:根據(jù)余弦定理,結(jié)合C=60°得c2=a2+b2-ab,結(jié)合已知條件a2+b2-c2=4即可得到ab的值為4.
解答:解:∵△ABC中C=60°,
∴根據(jù)余弦定理,得c2=a2+b2-2abcos60°=a2+b2-ab,
整理得a2+b2-c2=ab,
結(jié)合條件a2+b2-c2=4,可得ab=4
故答案為:4
點(diǎn)評(píng):本題給出三角形ABC的角C=60°且a2+b2-c2=4,求ab的值.著重考查了運(yùn)用余弦定理解三角形的知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)已知函數(shù)f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函數(shù)g(x)的極大值.
(Ⅱ)求證:存在x0∈(1,+∞),使g(x0)=g(
1
2
)
;
(Ⅲ)對(duì)于函數(shù)f(x)與h(x)定義域內(nèi)的任意實(shí)數(shù)x,若存在常數(shù)k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,則稱直線y=kx+b為函數(shù)f(x)與h(x)的分界線.試探究函數(shù)f(x)與h(x)是否存在“分界線”?若存在,請(qǐng)給予證明,并求出k,b的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)函數(shù)y=esinx(-π≤x≤π)的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)已知定義在R上的函數(shù)y=f(x)對(duì)任意的x都滿足f(x+1)=-f(x),當(dāng)-1≤x<1時(shí),f(x)=x3,若函數(shù)g(x)=f(x)-loga|x|至少6個(gè)零點(diǎn),則a取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)已知x∈R,ω>0,
u
=(1,sin(ωx+
π
2
)),
v
=(cos2ωx,
3
sinωx)函數(shù)f(x)=
u
v
-
1
2
的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)某班共有52人,現(xiàn)根據(jù)學(xué)生的學(xué)號(hào),用系統(tǒng)抽樣的方法,抽取一個(gè)容量為4的樣本,已知3號(hào)、29號(hào)、42號(hào)同學(xué)在樣本中,那么樣本中還有一個(gè)同學(xué)的學(xué)號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案