【題目】已知函數(shù)

1)當=0時,求實數(shù)的m值及曲線在點(1, )處的切線方程;

2)討論函數(shù)的單調性.

【答案】1m=﹣1,y=﹣12)見解析

【解析】試題分析:(1)求出,的值可得切點坐標,求出的值,可得切線斜率,利用點斜式可得曲線在點處的切線方程;(2)求出,分四種情況討論的范圍,在定義域內,分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;

求導,利用導數(shù)與函數(shù)單調性的關系,分類討論的取值范圍,分別求得單調區(qū)間.

試題解析1)函數(shù)y=fx)的定義域為(0,+∞),

求導

f'1=0,解得m=﹣1

從而f1=﹣1,曲線y=fx)在點(1f1))處的切線方程為y=﹣1.  

2)由,

m≥0時,函數(shù)y=fx)的減區(qū)間為(0,),增區(qū)間為(,+∞

m0時,由,得,或

m﹣2時,y=fx)的減區(qū)間為(0,)和(,+∞)增區(qū)間為(﹣);

m=﹣2時,y=fx)的減區(qū)間為(0,+∞)沒有增區(qū)間.

當﹣2m0時,y=fx)的減區(qū)間為(0,)和(﹣,+∞),增區(qū)間為(,

綜上可知:當m≥0時,函數(shù)y=fx)的減區(qū)間為(0),增區(qū)間為(,+∞);

m﹣2時,y=fx)的減區(qū)間為(0)和(,+∞)增區(qū)間為(﹣,);

m=﹣2時,y=fx)的減區(qū)間為(0,+∞)沒有增區(qū)間;

當﹣2m0時,y=fx)的減區(qū)間為(0,)和(﹣+∞),增區(qū)間為(,).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f (x)=x-(a+1)ln x-(a∈R),g (x)=x2+ex-xex.

(1)當x∈[1,e] 時,求f (x)的最小值;

(2)當a<1時,若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求函數(shù)上的最小值;

2)若對任意的恒成立.試求實數(shù)a的取值范圍;

3)若時,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,a、b、c分別是角A、B、C的對邊,S是該三角形的面積,且

1)求角A的大;

2)若角A為銳角, ,求邊BC上的中線AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司發(fā)放員工的薪水有三種方式:①第一個月工資3000元,以后每月以1%的增長率增長;②第一個月工資2400元,以后每月以2%的增長率增長;③第一個月工資為3200元,每月漲工資30元.

1)設第x個月的工資分別為元,試分別建立關于x的函數(shù);

2)借助計算器計算這三種情況下各個月的工資;

3)請分析這三種領薪方法的區(qū)別,作為員工選擇何種方法更合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分15分)如圖,在半徑為的半圓形(O為圓心)鐵皮上截取一塊矩形材料ABCD,其中點A、B在直徑上,點C、D在圓周上,將所截得的矩形鐵皮ABCD卷成一個以AD為母線的圓柱形罐子的側面(不計剪裁和拼接損耗),記圓柱形罐子的體積為

(1)按下列要求建立函數(shù)關系式:

,將表示為的函數(shù);

),將表示為的函數(shù);

(2)請選用(1)問中的一個函數(shù)關系,求圓柱形罐子的最大體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了工廠技術改造后某種型號設備的使用年限x和所支出的維修費y(萬元)的幾組對照數(shù)據(jù):

x(年)

2

3

4

5

6

y(萬元)

1

2.5

3

4

4.5

1)若知道yx呈線性相關關系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;

2)已知該工廠技術改造前該型號設備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預測該型號設備技術改造后,使用10年的維修費用能否比技術改造前降低?參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中有一個“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即尺),蘆葦生長在水的中央,長出水面的部分為1.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦?shù)拈L度各是多少?假設,現(xiàn)有下述四個結論:

①水深為12尺;②蘆葦長為15尺;③;④.

其中所有正確結論的編號是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

同步練習冊答案