在△ABC中,A=45°,C=105°,a=
2
,則b的長(zhǎng)度
 
考點(diǎn):正弦定理
專題:解三角形
分析:由三角形內(nèi)角和定理求出B=30°然后利用正弦定理求解即可.
解答: 解:∵A=45°,C=105°,
∴由三角形內(nèi)角和定理可知,
B=180°-A-B=30°
又由正弦定理得,
2
sin45°
=
b
sin30°

解得,b=1.
故答案為:1
點(diǎn)評(píng):本題主要考查三角形內(nèi)角和定理和正弦定理的應(yīng)用.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求圓C:x2+y2-4x+4y+4=0被直線l:x-y-5=0所截的弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α、β是一元二次方程x2-2x+m=0的兩個(gè)虛根.若|αβ|=4,則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=2,其前n項(xiàng)和為Sn.若Sn+1=2Sn+1,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin 2x+cos2(x-
π
3
)
的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
x+2
-x
,g(x)=x2-2mx+5m-2(m∈R),對(duì)于任意的x1∈[-2,2],總存在x2∈[-2,2],使得f(x1)=g(x2)成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2,x≤0
2x,x>0 
,則f(f(-1))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=2x3-3x,過點(diǎn)M(0,32)作曲線的切線,則切線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z=
1-i
1+2i
對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案