“雞兔同籠”是我國隋朝時期的數(shù)學(xué)著作《孫子算經(jīng)》中的一個有趣而意義深遠(yuǎn)的數(shù)學(xué)問題:“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?”用方程組的思想不難解決這一問題,請你設(shè)計一個解決這類問題的通用算法.

答案:
解析:

  答案:第一步:輸入總頭數(shù)H,總腳數(shù)F.

  第二步:計算雞的只數(shù)x=(4*H-F)/2.

  第三步:計算兔的只數(shù)y=(F-2*H)/2.

  第四步:輸出x y.

  思路解析:本題考查算法的實際應(yīng)用.可先建立數(shù)學(xué)模型——二元一次方程組來求解,然后設(shè)計出算法.設(shè)雞、兔各有x、y只,雞兔總頭數(shù)為H,總腳數(shù)為F,則∴x=,y=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“雞兔同籠”是我國隋朝時期的數(shù)學(xué)著作《孫子算經(jīng)》中的一個有趣而意義深遠(yuǎn)的數(shù)學(xué)問題:“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?”用方程組的思想不難解決這一問題,請你設(shè)計一個解決這類問題的通用算法。

      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年蘇教版高中數(shù)學(xué)必修3 1.1算法的含義練習(xí)卷(解析版) 題型:解答題

“雞兔同籠“是我國隋朝時期的數(shù)學(xué)著作《孫子算經(jīng)》中的一個有趣而具有深遠(yuǎn)影響的題目:

“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何。

用方程組的思想不難解決這一問題,請你設(shè)計一個這類問題的通用算法。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“雞兔同籠“是我國隋朝時期的數(shù)學(xué)著作《孫子算經(jīng)》中的一個有趣而具有深遠(yuǎn)影響的題目:
“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何。
用方程組的思想不難解決這一問題,請你設(shè)計一個這類問題的通用算法。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“雞兔同籠”是我國隋朝時期的數(shù)學(xué)著作《孫子算經(jīng)》中的一個有趣而具有深遠(yuǎn)影響的題目:

“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何.”

用方程組的思想不難解決這一問題,請你設(shè)計一個這類問題的通用算法.

查看答案和解析>>

同步練習(xí)冊答案