已知曲線y=x2上一點(diǎn)P處的切線與直線2x-y+1=0平行,則點(diǎn)P的坐標(biāo)為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:浙江省嘉興市第一中學(xué)2011-2012學(xué)年高二下學(xué)期摸底試卷數(shù)學(xué)理科試題 題型:044
已知函數(shù)f(x)=ax+lnx,a∈R
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)對(duì)于曲線上的不同兩點(diǎn)P1(x1,y1),P2(x2,y2),如果存在曲線上的點(diǎn)Q(x0,y0),且x1<x0<x2,使得曲線在點(diǎn)Q處的切線l∥P1P2,則稱l為弦P1P2的伴隨切線.特別地,當(dāng)x0=λx1+(1-λ)x2(0<λ<1)時(shí),又稱l為P1P2的λ-伴隨切線.
(ⅰ)求證:曲線y=f(x)的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有-伴隨切線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年高考預(yù)測(cè)卷數(shù)學(xué)科(一)新課標(biāo) 題型:013
已知函數(shù)y=x3+x2+x的圖像C上存在一定點(diǎn)P滿足:若過點(diǎn)p的直線l與曲線C交于不同于P的兩點(diǎn)M(x1,y1),N(x2,y2),就恒有y1+y2為定值y0,則y0的值為
A.-
B.-
C.-
D.-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:重慶市西南師大附中2010屆高三下學(xué)期3月月考數(shù)學(xué)理科試題 題型:022
已知函數(shù)y=x3+x2+x的圖象C上存在一定點(diǎn)P滿足:若過點(diǎn)P的直線l與曲線C交于不同于P的兩點(diǎn)M(x1,y1)、N(x2,y2),且恒有y1+y2為定值y0,則y0的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)理科(廣東B卷) 題型:044
已知曲線
C:y=x2與直線l:x-y+2=0交于兩點(diǎn)A(xA,yA)和B(xB,yB),且xA<xB.記曲線C在點(diǎn)A和點(diǎn)B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D.設(shè)點(diǎn)P(s,t)是L上的任一點(diǎn),且點(diǎn)P與點(diǎn)A和點(diǎn)B均不重合.(1)若點(diǎn)Q是線段AB的中點(diǎn),試求線段PQ的中點(diǎn)M的軌跡方程;
(2)若曲線與點(diǎn)D有公共點(diǎn),試求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)= .
(1)求函數(shù)f(x)在區(qū)間[一1,1]上的最大值與最小值;
(2)求證:對(duì)于區(qū)間[一1,1]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|<1;
(3)若曲線y=f(x)上兩點(diǎn)A、B處的切線都與y軸垂直,且線段AB與x軸有公共點(diǎn),求a的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com