精英家教網 > 高中數學 > 題目詳情

【題目】已知集合A=[a﹣3,a],函數 (﹣2≤x≤5)的單調減區(qū)間為集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求實數a的取值范圍.

【答案】
(1)解:由題意知函數f(x)的定義域是:[﹣2,5],

則函數y=x2﹣4x=(x﹣2)2﹣4的減區(qū)間為[﹣2,2],

,則函數f(x)的減區(qū)間[﹣2,2],即集合B=[﹣2,2],

當a=0時,A=[﹣3,0],

RA=(﹣∞,﹣3)∪(0,+∞),(RB)=(﹣∞,﹣2)∪(2,+∞);

所以(RA)∪(RB)=(﹣∞,﹣2)∪(0,+∞)


(2)解:由A∩B=A得,AB=[﹣2,2],

所以 ,解得1≤a≤2,

即實數a的取值范圍為[1,2]


【解析】(1)根據二次函數、指數函數、復合函數的單調性求出集合B,由條件和補集的運算求出RA、RB,由交集的運算求出(RA)∪(RB);(2)由A∩B=A得AB,根據子集的定義和題意列出不等式組,求出實數a的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,則函數y=f(1﹣x)的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某著名歌星在某地舉辦一次歌友會,有1000人參加,每人一張門票,每張100元.在演出過程中穿插抽獎活動,第一輪抽獎從這1000張票根中隨機抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動.第二輪抽獎由第一輪獲獎者獨立操作按鈕,電腦隨機產生兩個實數x,y(x,y∈[0,4]),若滿足y≥ ,電腦顯示“中獎”,則抽獎者再次獲得特等獎獎金;否則電腦顯示“謝謝”,則不獲得特等獎獎金.
(1)已知小明在第一輪抽獎中被抽中,求小明在第二輪抽獎中獲獎的概率;
(2)設特等獎獎金為a元,小李是此次活動的顧客,求小李參加此次活動獲益的期望;若該歌友會組織者在此次活動中獲益的期望值是至少獲得70000元,求a的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為獲得較好的收益,每年要投入一定資金用于廣告促銷,經調查,每年投入廣告費(百萬元),可增加銷售額約為(百萬元)(

(1)若該公司當年的廣告費控制在4百萬元之內,則應該設入多少廣告費,才能使該公司獲得的收益最大?

(2)現(xiàn)該公司準備共投入6百萬元,分別用于廣告促銷售和技術改造,經預測,每設入技術改造費(百萬元),可增加銷售額約為(百萬元),請設計一種資金分配方案,使該公司由此獲得最大收益.(注:收益銷售額成本)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線 的焦點與橢圓 的一個焦點重合,點在拋物線上,過焦點的直線交拋物線于、兩點.

(Ⅰ)求拋物線的方程以及的值;

(Ⅱ)記拋物線的準線軸交于點,試問是否存在常數,使得都成立?若存在,求出實數的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=
(1)求f(x)+f(1﹣x)的值;
(2)若數列{an}滿足an=f(0)+f( )+f( )+…+f( )+f(1)(n∈N*),求數列{an}的通項公式;
(3)若數列{bn}滿足bn=2nan , Sn是數列{bn}的前n項和,是否存在正實數k,使不等式knSn>3bn對于一切的n∈N*恒成立?若存在,請求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點P(2,0)及圓C:x2+y2﹣6x+4y+4=0.
(1)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設直線ax﹣y+1=0與圓C交于A,B兩點,是否存在實數a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 ,試求y=[f(x)]2+f(x2)的值域

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有一批材料可以建成80m的圍墻,若用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的小矩形(如圖所示),且圍墻厚度不計,則圍成的矩形的最大面積為(
A.200m2
B.360m2
C.400m2
D.480m2

查看答案和解析>>

同步練習冊答案