已知公差大于零的等差數(shù)列,前項(xiàng)和為.且滿足

(Ⅰ)求數(shù)列的通項(xiàng)公式;

 

【答案】

(Ⅰ).     

(Ⅱ)當(dāng)且僅當(dāng)時(shí),取得最大值

【解析】(I)根據(jù)可建立關(guān)于關(guān)于a1和d的方程,求出a1,d的值,進(jìn)而得到數(shù)列的通項(xiàng)公式.

(II)由的通項(xiàng)公式可求出,所以,所以

再使用基本不等式求其最大值即可

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列an的前n項(xiàng)和為Sn,且滿足:a3•a4=117,a2+a5=22.
(1)求數(shù)列an的通項(xiàng)公式an
(2)若數(shù)列bn是等差數(shù)列,且bn=
Sn
n+c
,求非零常數(shù)c;
(3)若(2)中的bn的前n項(xiàng)和為Tn,求證:2Tn-3bn-1
64bn
(n+9)bn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a3•a4=117,a2+a5=22.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}是等差數(shù)列,且bn=
Snn+c
,求非零常數(shù)c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列{an},前n項(xiàng)和為Sn.且滿足a3a4=117,a2+a5=22.
(Ⅰ)求數(shù)列an的通項(xiàng)公式;
(2)若bn=
Sn
n-
1
2
,求f(n)=
bn
(n+36)bn+1
(n∈N*)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a3•a4=117,a2+a5=22,
(1)求通項(xiàng)an;
(2)若數(shù)列{bn}滿足bn=
Snn+c
,是否存在非零實(shí)數(shù)c,使得{bn}為等差數(shù)列?若存在,求出c的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•煙臺一模)已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和Sn,且滿足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比數(shù)列的連續(xù)三項(xiàng),求i的值;
(2)設(shè)bn=
n(2n+1)Sn
,是否存在一個(gè)最小的常數(shù)m使得b1+b2+…+bn<m對于任意的正整數(shù)n均成立,若存在,求出常數(shù)m;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案