【題目】關(guān)于x的實(shí)系數(shù)一元二次方程有兩個(gè)異號實(shí)根的充要條件是什么?為什么?
【答案】【解答】關(guān)于x的實(shí)系數(shù)的一元二次方程有兩個(gè)異號實(shí)根的充要條件是ac<0.
證明:①充分性:∵ac<0,∴-4ac>0,∴Δ=b2-4ac>0,∴設(shè)x1 , x2為原方程的兩個(gè)不等實(shí)根,又由根與系數(shù)的關(guān)系得 則x1,x2異號,即ac<0是關(guān)于x的實(shí)系數(shù)一元二次方程ax2+bx+c=0有兩個(gè)異號實(shí)根的充分條件.
②必要性;設(shè)x1 , x2是關(guān)于x的實(shí)系數(shù)一元二次方程ax2+bx+c=0的兩個(gè)實(shí)根異號,則,所以ac<0,即ac<0是關(guān)于x的系數(shù)的一元 二次方程ax2+bx+c=0有兩個(gè)異號實(shí)根的必要條件.綜合(1)(2)可得原結(jié)論成立
【解析】證明充要條件,首先證明充分性,再證明必要性,最后總結(jié)即可。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】放射性元素由于不斷有原子放射出微粒子而變成其他元素,其含量不斷減少,這種現(xiàn)象稱為衰變.假設(shè)在放射性同位素銫137的衰變過程中,其含量M(單位:太貝克)與時(shí)間t(單位:年)滿足函數(shù)關(guān)系:M(t)=M0 ,其中M0為t=0時(shí)銫137的含量.已知t=30時(shí),銫137含量的變化率是﹣10In2(太貝克/年),則M(60)=( )
A.5太貝克
B.75In2太貝克
C.150In2太貝克
D.150太貝克
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|1<x<2},B={x|2a﹣1<x<2a+1}.
(Ⅰ)若AB,求a的取值范圍;
(Ⅱ)若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn),橢圓的離心率為,過原點(diǎn)的直線交橢圓于兩點(diǎn),若四邊形的面積最大值為.
(1)求橢圓的方程;
(2)若直線與橢圓交于且,求證:原點(diǎn)到直線的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題 p: 方程 在 上有且僅有一解;命題 q :只有一個(gè)實(shí)數(shù)x滿足不等式 .若命題“ p 或q ”是假命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列三個(gè)命題:
①若一個(gè)球的半徑縮小到原來的 ,則其體積縮小到原來的 ;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差也相等;
③直線x+y+1=0與圓x2+y2= 相切.
其中真命題的序號是( )
A.①②③
B.①②
C.①③
D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】歐巴老師布置給時(shí)鎮(zhèn)同學(xué)這樣一份數(shù)學(xué)作業(yè):在同一個(gè)直角坐標(biāo)系中畫出四個(gè)對數(shù)函數(shù)的圖象,使它們的底數(shù)分別為 和 .時(shí)鎮(zhèn)同學(xué)為了和暮煙同學(xué)出去玩,問大英同學(xué)借了作業(yè)本很快就抄好了,詳見如圖.第二天,歐巴老師當(dāng)堂質(zhì)問時(shí)鎮(zhèn)同學(xué):“你畫的四條曲線中,哪條是底數(shù)為e的對數(shù)函數(shù)圖象?”時(shí)鎮(zhèn)同學(xué)無言以對,憋得滿臉通紅,眼看時(shí)鎮(zhèn)同學(xué)就要被歐巴老師訓(xùn)斥一番,聰明睿智的你能不能幫他一把,回答這個(gè)問題呢?曲線才是底數(shù)為e的對數(shù)函數(shù)的圖象.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com