在直三棱柱ABC-A1B1C1中,∠ABC=90°AB=6,BC=8,AA1=8,則三棱柱ABC-A1B1C1外接球的表面積是________.

164π
分析:由于直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,我們可以把直三棱柱ABC-A1B1C1補(bǔ)成四棱柱,則四棱柱的體對角線是其外接球的直徑,求出外接球的直徑后,代入外接球的表面積公式,即可求出該三棱柱的外接球的表面積.
解答:解:由于直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,
把直三棱柱ABC-A1B1C1補(bǔ)成四棱柱,
則四棱柱的體對角線是其外接球的直徑,
所以外接球半徑為=,
則三棱柱ABC-A1B1C1外接球的表面積是4πR2=164π.
故答案為:164π.
點評:在求一個幾何體的外接球表面積(或體積)時,關(guān)鍵是求出外接球的半徑,我們通常有如下辦法:①構(gòu)造三角形,解三角形求出R;②找出幾何體上到各頂點距離相等的點,即球心,進(jìn)而求出R;③將幾何體補(bǔ)成一個長方體,其對角線即為球的直徑,進(jìn)而求出R.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中點.
(Ⅰ)求證:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直線B′D與平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州一模)如圖,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,則AB′與側(cè)面AC′所成角的大小為
30°
30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有兩個動點E,F(xiàn),且EF=a (a為常數(shù)).
(Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;
(Ⅱ)判斷三棱錐B-CEF的體積是否為定值.若是定值,求出這個三棱錐的體積;若不是定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
(1)求證:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,點D是BC的中點,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲過點A′作一截面與平面AC'D平行,問應(yīng)當(dāng)怎樣畫線,寫出作法,并說明理由;
(2)求異面直線BA′與 C′D所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案