【題目】如圖,四棱錐中,,,,,,為的中點.
(1)求證:;
(2)求證:平面;
(3)求直線與平面所成的角.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)由,可得. 結(jié)合利用線面垂直的判定定理可得平面,進而可得結(jié)果;(2)由三角形中位線定理可得,可證明四邊形. 是平行四邊形,可得,由線面平行的判定定理可得結(jié)果;(3)以為原點,以的延長線,為軸、軸、軸建立坐標系,先證明是平面的法向量,求出,利用空間向量夾角公式可得結(jié)果.
(1),.
又,
.
又,
.
(2)取,連接.
分別是的中點,
且,
又且,且,
四邊形是平行四邊形,,
又,
.
(3)以為原點,以的延長線,
為軸、軸、軸建立坐標系,
則,
,
,
平面.是面的法向量,
,
設直線與平面所成的角為,
則,
直線與平面所成的角為.
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數(shù)據(jù)進行了研究,發(fā)現(xiàn)年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關關系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關于年宣傳費x的回歸方程;
(2)已知這種產(chǎn)品的年利潤z與x,y的關系為,根據(jù)(1)中的結(jié)果回答下列問題:
①當年宣傳費為10萬元時,年銷售量及年利潤的預報值是多少?
②估算該公司應該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.
附:回歸方程中的斜率和截距的最小二乘估計公式分別為
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當a=1時,求函數(shù)的單調(diào)區(qū)間:
(Ⅱ)求函數(shù)的極值;
(Ⅲ)若函數(shù)有兩個不同的零點,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,,其前n項和,則下列說法正確的個數(shù)是( )
①數(shù)列是等差數(shù)列;②;③.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)在處的切線方程;
(Ⅱ)若對任意的,恒成立,求的取值范圍;
(Ⅲ)當時,設函數(shù).證明:對于任意的,函數(shù)有且只有一個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年4月,北京世界園藝博覽會開幕,為了保障園藝博覽會安全順利地進行,某部門將5個安保小組全部安排到指定的三個不同區(qū)域內(nèi)值勤,則每個區(qū)域至少有一個安保小組的排法有( )
A.150種B.240種C.300種D.360種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】英語老師要求學生從星期一到星期四每天學習3個英語單詞:每周五對一周內(nèi)所學單詞隨機抽取若干個進行檢測(一周所學的單詞每個被抽到的可能性相同)
(1)英語老師隨機抽了個單詞進行檢測,求至少有個是后兩天學習過的單詞的概率;
(2)某學生對后兩天所學過的單詞每個能默寫對的概率為,對前兩天所學過的單詞每個能默寫對的概率為,若老師從后三天所學單詞中各抽取一個進行檢測,求該學生能默寫對的單詞的個數(shù)的分布列和期望。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com