【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”,為了了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研,人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
年齡 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 28 | 17 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷是否95%的把握認(rèn)為以45歲為界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持有差異;
45歲以下 | 45歲以上 | 總計(jì) | |
支持 | |||
不支持 | |||
總計(jì) |
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng),現(xiàn)從這8人中隨機(jī)抽2人.
①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率;
②記抽到45歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
.
【答案】
(1)解:由統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表如下,
45歲以下 | 45歲以上 | 總計(jì) | |
支持 | 35 | 45 | 80 |
不支持 | 15 | 5 | 20 |
總計(jì) | 50 | 50 | 100 |
計(jì)算觀測(cè)值 ,
所以有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休政策”的支持度有差異;
(2)①抽到1人是45歲以下的概率 ,抽到1人是45歲以上的概率是 ,
故所求的概率是P= × = ;
②根據(jù)題意,X的可能取值是0,1,2;
計(jì)算P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
可得隨機(jī)變量X的分布列為
X | 0 | 1 | 2 |
P |
故數(shù)學(xué)期望為E(X)=0× +1× +2× = .
【解析】(1)由統(tǒng)計(jì)數(shù)據(jù)得到2×2列聯(lián)表,根據(jù)公式可得到K 2=6.25 > 3.841,故有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休政策”的支持度有差異;(2)分別求出抽到1人是45歲以下的概率,抽到1人是45歲以上的概率,故所求的概率為, 根據(jù)題意,X的可能取值是0,1,2;分別算出概率,列出分布列,得到數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax﹣1(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a>0時(shí),若f(x)≥0對(duì)任意的x∈R恒成立,求實(shí)數(shù)a的值;
(Ⅲ)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin(2x﹣ )的圖象向右平移 個(gè)單位后得到函數(shù)g(x),則g(x)具有性質(zhì)( 。
A.最大值為1,圖象關(guān)于直線x= 對(duì)稱
B.在(0, )上單調(diào)遞減,為奇函數(shù)
C.在(﹣ , )上單調(diào)遞增,為偶函數(shù)
D.周期為π,圖象關(guān)于點(diǎn)( ,0)對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=|x+3|+|x﹣1|,其最小值為t.
(1)求t的值;
(2)若正實(shí)數(shù)a,b滿足a+b=4,求證 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩坐標(biāo)系中的單位長(zhǎng)度相同,已知曲線C的極坐標(biāo)方程為ρ=2(sinθ+cosθ).
(Ⅰ)求C的直角坐標(biāo)方程;
(Ⅱ)直線 (t為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于E,求|EA|+|EB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( 。
A.4.5
B.6
C.7.5
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (φ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)已知傾斜角為135°且過點(diǎn)P(1,2)的直線l與曲線C交于M,N兩點(diǎn),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f'(x)=2x+m,且f(0)=0,函數(shù)f(x)的圖象在點(diǎn)A(1,f(1))處的切線的斜率為3,數(shù)列 的前n項(xiàng)和為Sn , 則S2017的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代名著《莊子天下篇》中有一句名言“一尺之棰,日取其半,萬世不竭”,其意思為:一尺的木棍,每天截取一半,永遠(yuǎn)都截不完,現(xiàn)將該木棍依此規(guī)律截取,如圖所示的程序框圖的功能就是計(jì)算截取7天后所剩木棍的長(zhǎng)度(單位:尺),則①②③處可分別填入的是( 。
A.①i≤7?②s=s﹣ ③i=i+1
B.①i≤128?②s=s﹣ ③i=2i
C.①i≤7?②s=s﹣ ③i=i+1
D.①i≤128?②s=s﹣ ③i=2i
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com