12.函數(shù)$y=\sqrt{x}$的導(dǎo)數(shù)y′=$\frac{1}{2\sqrt{x}}$.

分析 直接利用導(dǎo)數(shù)公式可得結(jié)論.

解答 解:函數(shù)$y=\sqrt{x}$的導(dǎo)數(shù)y′=$\frac{1}{2\sqrt{x}}$,
故答案為$\frac{1}{2\sqrt{x}}$.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)公式的運(yùn)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=|x2-2x-3|的單調(diào)增區(qū)間是[-1,1]和[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=$\sqrt{x}$+$\sqrt{x-2}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.(2,+∞)C.[0,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.直線(xiàn)l過(guò)拋物線(xiàn)C:y=$\frac{1}{4}{x^2}$的焦點(diǎn)且與y軸垂直,則l與C所圍成的圖形的面積等于( 。
A.$\frac{4}{3}$B.2C.$\frac{8}{3}$D.$\frac{{16\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為:$\left\{\begin{array}{l}x=acosφ\(chéng)\ y=2sinφ\(chéng)end{array}$(φ為參數(shù))(a>0).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相等的長(zhǎng)度單位建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為:2ρcosθ+3ρsinθ-8=0.已知曲線(xiàn)C1與曲線(xiàn)C2的一個(gè)交點(diǎn)在x軸上.
(1)求a的值及曲線(xiàn)C1的普通方程;
(2)已知點(diǎn)A,B是極坐標(biāo)方程θ=α,θ=α+$\frac{π}{2}$的兩條射線(xiàn)與曲線(xiàn)C1的交點(diǎn),求$\frac{1}{{{{|{OA}|}^2}}}$+$\frac{1}{{{{|{OB}|}^2}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)y=$\frac{\sqrt{-x}}{2{x}^{2}-3x-2}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,0]B.(-∞,-$\frac{1}{2}$]C.(-∞,-$\frac{1}{2}$]∪(-$\frac{1}{2}$,0]D.(-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知 P(A)=0.65,P(B)=0.2,P(C)=0.1.則事件“抽到的不是一等品”的概率為0.35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=16,sinA=sinBcosC,D是線(xiàn)段AB上的動(dòng)點(diǎn)(含端點(diǎn)),則$\overrightarrow{DA}$•$\overrightarrow{DC}$的取值范圍是[-4,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,點(diǎn)O為△ABC的重心,且OA⊥OB,AB=4,則$\overrightarrow{AC}•\overrightarrow{BC}$的值為32

查看答案和解析>>

同步練習(xí)冊(cè)答案