(12分)在四棱錐P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD與底面成30°角.
(1)若AE⊥PD,E為垂足,求證:BE⊥PD;
(2)求異面直線AE與CD所成角的余弦值.
(1)見解析;(2).
【解析】
試題分析:(1)證明:∵PA⊥平面ABCD,∴PA⊥AB,又AB⊥AD.∴AB⊥平面PAD.又∵AE⊥PD,∴PD⊥平面ABE,故BE⊥PD.
(2)解:以A為原點(diǎn),AB、AD、AP所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系,則點(diǎn)C、D的坐標(biāo)分別為(a,a,0),(0,2a,0).
∵PA⊥平面ABCD,∠PDA是PD與底面ABCD所成的角,∴∠PDA=30°.
于是,在Rt△AED中,由AD=2a,得AE=a.過E作EF⊥AD,垂足為F,在Rt△AFE中,由AE=a,∠EAF=60°,得AF=,EF=a,∴E(0,a)
于是,={-a,a,0}
設(shè)與的夾角為θ,則由
cosθ=
AE與CD所成角的余弦值為.
考點(diǎn):本題主要考查空間向量的應(yīng)用,綜合考查向量的基礎(chǔ)知識(shí)。
點(diǎn)評(píng):第(2)小題中,以向量為工具,利用空間向量坐標(biāo)及數(shù)量積,求兩異面直線所成的角是立體幾何中的常見問題和處理手段.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com