【題目】某理財(cái)公司有兩種理財(cái)產(chǎn)品A和B,這兩種理財(cái)產(chǎn)品一年后盈虧的情況如下(每種理財(cái)產(chǎn)品的不同投資結(jié)果之間相互獨(dú)立):
產(chǎn)品A
投資結(jié)果 | 獲利40% | 不賠不賺 | 虧損20% |
概率 |
產(chǎn)品B
投資結(jié)果 | 獲利20% | 不賠不賺 | 虧損10% |
概率 | p | q |
注:p>0,q>0
(1)已知甲、乙兩人分別選擇了產(chǎn)品A和產(chǎn)品B投資,如果一年后他們中至少有一人獲利的概率大于,求實(shí)數(shù)p的取值范圍;
(2)若丙要將家中閑置的10萬(wàn)元人民幣進(jìn)行投資,以一年后投資收益的期望值為決策依據(jù),則選用哪種產(chǎn)品投資較理想?
【答案】(1);
(2)當(dāng)時(shí),E(X)=E(Y),選擇產(chǎn)品A和產(chǎn)品B一年后投資收益的數(shù)學(xué)期望相同,可以在產(chǎn)品A和產(chǎn)品B中任選一個(gè);
當(dāng)時(shí),E(X)>E(Y),選擇產(chǎn)品A一年后投資收益的數(shù)學(xué)期望較大,應(yīng)選產(chǎn)品A;
當(dāng)時(shí),E(X)<E(Y),選擇產(chǎn)品B一年后投資收益的數(shù)學(xué)期望較大,應(yīng)選產(chǎn)品B.
【解析】
(1)先表示出兩人全都不獲利的概率,再求至少有一人獲利的概率,列出不等式求解;
(2)分別求出兩種產(chǎn)品的期望值,對(duì)期望中的參數(shù)進(jìn)行分類討論,得出三種情況.
(1)記事件A為“甲選擇產(chǎn)品A且盈利”,事件B為“乙選擇產(chǎn)品B且盈利”,事件C為“一年后甲,乙兩人中至少有一人投資獲利”,則,.
所以,解得.
又因?yàn)?/span>,q>0,所以.
所以.
(2)假設(shè)丙選擇產(chǎn)品A進(jìn)行投資,且記X為獲利金額(單位:萬(wàn)元),則隨機(jī)變量X的分布列為
X | 4 | 0 | -2 |
p |
則.
假設(shè)丙選擇產(chǎn)品B進(jìn)行投資,且記Y為獲利金額(單位:萬(wàn)元),則隨機(jī)變量Y的分布列為
Y | 2 | 0 | -1 |
p | p | q |
則.
討論:
當(dāng)時(shí),E(X)=E(Y),選擇產(chǎn)品A和產(chǎn)品B一年后投資收益的數(shù)學(xué)期望相同,可以在產(chǎn)品A和產(chǎn)品B中任選一個(gè);
當(dāng)時(shí),E(X)>E(Y),選擇產(chǎn)品A一年后投資收益的數(shù)學(xué)期望較大,應(yīng)選產(chǎn)品A;
當(dāng)時(shí),E(X)<E(Y),選擇產(chǎn)品B一年后投資收益的數(shù)學(xué)期望較大,應(yīng)選產(chǎn)品B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:
x | … | -4 | -3 | -2 | -1 | 0 | 1 | … |
… | 5 | 0 | -3 | -4 | -3 | m | … |
(1)m= ;
(2)在圖中畫(huà)出這個(gè)二次函數(shù)的圖象;
(3)當(dāng)時(shí),x的取值范圍是 ;
(4)當(dāng)時(shí),y的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和,
(1)求數(shù)列的通項(xiàng)公式;
(2)令,記數(shù)列前n項(xiàng)和為,求;
(3)利用第二問(wèn)結(jié)果,設(shè)是整數(shù),問(wèn)是否存在正整數(shù)n,使等式成立?若存在,求出和相應(yīng)的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)不同身高的未成年男性的體重平均值如下表.
身高/ | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 |
體重/ | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 | 17.50 | 20.92 | 26.86 | 31.11 | 38.85 | 47.25 | 55.05 |
(1)根據(jù)表格提供的數(shù)據(jù),能否建立恰當(dāng)?shù)暮瘮?shù)模型,使它能比較近似地反映這個(gè)地區(qū)未成年男性體重與身高的函數(shù)關(guān)系?試寫(xiě)出這個(gè)函數(shù)模型的關(guān)系式.
(2)若體重超過(guò)相同身高男性體重平均值的1.2倍為偏胖,低于0.8倍為偏瘦,那么這個(gè)地區(qū)一名身高為,體重為的在校男生的體重是否正常?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E、F分別是PC、AD中點(diǎn),
(1)求證:DE//平面PFB;
(2)求PB與面PCD所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若是偶函數(shù),求k的值;
(2)設(shè)不等式的解集為A,若,求實(shí)數(shù)m的取值范圍;
(3)設(shè)函數(shù),若g(x)在有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下命題,①若實(shí)數(shù),則.
②歸納推理是由特殊到一般的推理,而類比推理是由特殊到特殊的推理;
③在回歸直線方程中,當(dāng)變量每增加一個(gè)單位時(shí),變量一定增加0.2單位.
④“若,則復(fù)數(shù)”類比推出“若,則”;
正確的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,圓的方程為,直線的極坐標(biāo)方程為.
(I )寫(xiě)出的極坐標(biāo)方程和的平面直角坐標(biāo)方程;
(Ⅱ) 若直線的極坐標(biāo)方程為,設(shè)與的交點(diǎn)為與的交點(diǎn)為求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com