已知橢C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,P是橢圓上任意一點(diǎn),若以坐標(biāo)原點(diǎn)為圓心,橢圓短軸長(zhǎng)為直徑的圓經(jīng)過(guò)橢圓的焦點(diǎn),且△PF1F2的周長(zhǎng)為4+2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線的l是圓O:x2+y2=
4
3
上動(dòng)點(diǎn)P(x0,y0)(x0-y0≠0)處的切線,l與橢圓C交于不同的兩點(diǎn)Q,R,證明:∠QOR的大小為定值.
分析:(Ⅰ)根據(jù)以坐標(biāo)原點(diǎn)為圓心,橢圓短軸長(zhǎng)為直徑的圓經(jīng)過(guò)橢圓的焦點(diǎn),可得b=c,利用△PF1F2的周長(zhǎng)為4+2
2
,可得a+c=2+
2
,從而可求橢圓的幾何量,進(jìn)而可得橢圓C的方程;
(Ⅱ)設(shè)直線的l方程與橢圓方程聯(lián)立,記Q(x1,y1),R(x2,y2),利用韋達(dá)定理,確定x1x2+y1y2=0,即可證得結(jié)論.
解答:(Ⅰ)解:因?yàn)橐宰鴺?biāo)原點(diǎn)為圓心,橢圓短軸長(zhǎng)為直徑的圓經(jīng)過(guò)橢圓的焦點(diǎn),所以b=c,可得a=
2
c,
又因?yàn)椤鱌F1F2的周長(zhǎng)為4+2
2
,所以a+c=2+
2
,所以c=
2
,
所以a=2,b=
2
,所以所求橢圓C的方程為
x2
4
+
y2
2
=1
.           …(5分)
(Ⅱ)證明:直線的l方程為x0x+y0y=
4
3
,且x02+y02=
4
3
,記Q(x1,y1),R(x2,y2),
聯(lián)立方程
x2
4
+
y2
2
=1
x0x+y0y=
4
3
,消去y得(
y
2
0
+2
x
2
0
)x2-
16
3
x0
x+
32
9
-4
y
2
0
=0,
∴x1+x2=
16
3
x0
y
2
0
+2
x
2
0
,x1x2=
32
9
-4
y
2
0
y
2
0
+2
x
2
0
,…(8分)
y1y2=
1
y
2
0
(
4
3
-x0x1)(
4
3
-x0x2)
=
16
9
-4
x
2
0
y
2
0
+2
x
2
0
,…(10分)
∴x1x2+y1y2=
32
9
-4
y
2
0
y
2
0
+2
x
2
0
+
16
9
-4
x
2
0
y
2
0
+2
x
2
0
=0
∴∠QOR=90°為定值.                                            …(13分)
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生的計(jì)算能力,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,橢圓的短軸端點(diǎn)與雙曲線
y2
2
-x2
=1的焦點(diǎn)重合,過(guò)P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點(diǎn).
(Ⅰ)求橢C的方程;
(Ⅱ)求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)已知橢C:
x2
a2
+
y2
b2
=1
(a>b>0),以橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形周長(zhǎng)是4+2
3
,且∠BF1F2=
π
6

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過(guò)點(diǎn)Q(1,
1
2
)引曲線C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:崇明縣二模 題型:解答題

已知橢C:
x2
a2
+
y2
b2
=1
(a>b>0),以橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形周長(zhǎng)是4+2
3
,且∠BF1F2=
π
6

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過(guò)點(diǎn)Q(1,
1
2
)引曲線C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,P是橢圓上任意一點(diǎn),若以坐標(biāo)原點(diǎn)為圓心,橢圓短軸長(zhǎng)為直徑的圓經(jīng)過(guò)橢圓的焦點(diǎn),且△PF1F2的周長(zhǎng)為4+2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線的l是圓O:x2+y2=
4
3
上動(dòng)點(diǎn)P(x0,y0)(x0-y0≠0)處的切線,l與橢圓C交于不同的兩點(diǎn)Q,R,證明:∠QOR的大小為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案