(本小題滿分12分)一個容量為M的樣本數(shù)據(jù),其頻率分布表如下.

(Ⅰ)表中a=       ,b =       ;

(Ⅱ)畫出頻率分布直方圖;

(Ⅲ)用頻率分布直方圖,求出總體的眾數(shù)及平均數(shù)的估計值.

頻率分布表                               

分組

頻數(shù)

頻率

頻率/組距

(10,20]

2

0.10

0.010

(20,30]

3

0.15

0.015

(30,40]

4

0.20

0.020

(40,50]

a

b

0.025

(50,60]

4

0.20

0.020

(60, 70]

2

0.10

0.010

 

 

 

 

 

 

 

 

頻率分布直方圖

 

【答案】

(Ⅰ)a=5,b =0.25,

(Ⅱ)頻率分布直方圖,如圖右所示:

 

(Ⅲ)眾數(shù)為:,

平均數(shù):

 

【解析】

試題分析:(1)由于樣本容量,頻率和頻數(shù)的關(guān)系得到結(jié)論。

(2)依照頻率分布直方圖和頻率的概念得到。.

(3)結(jié)合直方圖來表示眾數(shù)和平均數(shù)的求解運用

(Ⅰ)a=5,b =0.25---------------------2分

(Ⅱ)頻率分布直方圖,如圖右所示:

-------6分

(Ⅲ)眾數(shù)為:-----------------8分

平均數(shù):

-------------------------------12分

考點:本題主要考查了頻率分布直方圖的相關(guān)知識,以及頻率=頻數(shù):樣本容量,利用樣本估計總體等有關(guān)知識,屬于基礎(chǔ)題.

點評:解決該試題的關(guān)鍵是能利用直方圖來表格數(shù)據(jù)表述出各個組中 的頻率以及頻數(shù),進而作圖,確定出數(shù)字的特征。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案