【題目】已知函數(shù),(其中e為自然對(duì)數(shù)的底數(shù)),若關(guān)于x的方程恰有5個(gè)相異的實(shí)根,則實(shí)數(shù)a的取值范圍為________.
【答案】
【解析】
作出圖象,求出方程的根,分類討論的正負(fù),數(shù)形結(jié)合即可.
當(dāng)時(shí),令,解得,
所以當(dāng)時(shí),,則單調(diào)遞增,當(dāng)時(shí),,則單調(diào)遞減,
當(dāng)時(shí),單調(diào)遞減,且,
作出函數(shù)的圖象如圖:
(1)當(dāng)時(shí),方程整理得,只有2個(gè)根,不滿足條件;
(2)若,則當(dāng)時(shí),方程整理得,
則,,此時(shí)各有1解,
故當(dāng)時(shí),方程整理得,
有1解同時(shí)有2解,即需,,因?yàn)?/span>(2),故此時(shí)滿足題意;
或有2解同時(shí)有1解,則需,由(1)可知不成立;
或有3解同時(shí)有0解,根據(jù)圖象不存在此種情況,
或有0解同時(shí)有3解,則,解得,
故,
(3)若,顯然當(dāng)時(shí),和均無(wú)解,
當(dāng)時(shí),和無(wú)解,不符合題意.
綜上:的范圍是,
故答案為:,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形, ,平面平面,平面.
(1) 求證:;
(2) 若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司欲對(duì)員工飲食習(xí)慣進(jìn)行一次調(diào)查,從某科室的100人中的飲食結(jié)構(gòu)調(diào)查結(jié)果統(tǒng)計(jì)如下表.
主食蔬菜 | 主食肉類 | 總計(jì) | |
不超過(guò)45歲 | 15 | 40 | |
45歲以上 | 20 | ||
總計(jì) |
(1)完成列聯(lián)表,并判斷能否有99%的把握認(rèn)為員工的飲食習(xí)慣與年齡有關(guān)?
(2)在45歲以上員工中按照飲食習(xí)慣進(jìn)行分層抽樣抽出一個(gè)容量為6的樣本,從這6個(gè)人中隨機(jī)抽取3個(gè)人,求這3個(gè)人都主食蔬菜的概率.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一款手游,頁(yè)面上有一系列的偽裝,其中隱藏了4個(gè)寶藏.如果你在規(guī)定的時(shí)間內(nèi)找到了這4個(gè)寶藏,將會(huì)彈出下一個(gè)頁(yè)面,這個(gè)頁(yè)面仍隱藏了2個(gè)寶藏,若能在規(guī)定的時(shí)間內(nèi)找到這2個(gè)寶藏,那么闖關(guān)成功,否則闖關(guān)失敗,結(jié)束游戲;如果你在規(guī)定的時(shí)間內(nèi)找到了3個(gè)寶藏,仍會(huì)彈出下一個(gè)頁(yè)面,但這個(gè)頁(yè)面隱藏了4個(gè)寶藏,若能在規(guī)定的時(shí)間內(nèi)找到這4個(gè)寶藏,那么闖關(guān)成功,否則闖關(guān)失敗,結(jié)束游戲;其它情況下,不會(huì)彈出下一個(gè)頁(yè)面,闖關(guān)失敗,并結(jié)束游戲.
假定你找到任何一個(gè)寶藏的概率為,且能否找到其它寶藏相互獨(dú)立..
(1)求闖關(guān)成功的概率;
(2)假定你付1個(gè)Q幣游戲才能開(kāi)始,能進(jìn)入下一個(gè)頁(yè)面就能獲得2個(gè)Q幣的獎(jiǎng)勵(lì),闖關(guān)成功還能獲得另外4個(gè)Q幣的獎(jiǎng)勵(lì),闖關(guān)失敗沒(méi)有額外的獎(jiǎng)勵(lì).求一局游戲結(jié)束,收益的Q幣個(gè)數(shù)X的數(shù)學(xué)期望(收益=收入-支出).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是(是參數(shù)).以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)為曲線上的動(dòng)點(diǎn),過(guò)點(diǎn)且與垂直的直線交于點(diǎn),求的最小值,并求此時(shí)點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家污水處理廠有兩個(gè)相同的裝滿污水的處理池,通過(guò)去掉污物處理污水,池用傳統(tǒng)工藝成本低,每小時(shí)去掉池中剩余污物的10%,池用創(chuàng)新工藝成本高,每小時(shí)去掉池中剩余污物的19%.
(1)池要用多長(zhǎng)時(shí)間才能把污物的量減少一半;(精確到1小時(shí))
(2)如果污物減少為原來(lái)的10%便符合環(huán)保規(guī)定,處理后的污水可以排入河流,若兩池同時(shí)工作,問(wèn)經(jīng)過(guò)多少小時(shí)后把兩池水混合便符合環(huán)保規(guī)定.(精確到1小時(shí))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0(a>0),命題q:實(shí)數(shù)x滿足x2﹣5x+6<0.
(1)若a=1,且p∧q為真命題,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“隨機(jī)模擬方法”計(jì)算曲線與直線所圍成的曲邊三角形的面積時(shí),用計(jì)算機(jī)分別產(chǎn)生了10個(gè)在區(qū)間[1,e]上的均勻隨機(jī)數(shù)xi和10個(gè)在區(qū)間[0,1]上的均勻隨機(jī)數(shù),其數(shù)據(jù)如下表的前兩行.
x | 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
y | 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
lnx | 0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
由此可得這個(gè)曲邊三角形面積的一個(gè)近似值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知多面體的底面是邊長(zhǎng)為的菱形, 底面, ,且.
(1)證明:平面平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com