【題目】如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求二面角F﹣BE﹣D的余弦值.

【答案】(Ⅰ)證明:因?yàn)镈E⊥平面ABCD,所以DE⊥AC.
因?yàn)锳BCD是正方形,所以AC⊥BD,
從而AC⊥平面BDE
(Ⅱ)解:因?yàn)镈A,DC,DE兩兩垂直,所以建立空間直角坐標(biāo)系D﹣xyz如圖所示.
因?yàn)锽E與平面ABCD所成角為60°,即∠DBE=60°,
所以=
由AD=3,可知DE=3,AF=
則A(3,0,0),F(xiàn)(3,0,),E(0,0,3),B(3,3,0),C(0,3,0),
所以=(0,﹣3,),=(3,0,﹣2).
設(shè)平面BEF的法向量為=(x,y,z),則
, 即
令z=,則=(4,2,).
因?yàn)锳C⊥平面BDE,所以為平面BDE的法向量,=(3,﹣3,0).
所以cos<,>===
因?yàn)槎娼菫殇J角,所以二面角F﹣BE﹣D的余弦值為

【解析】(Ⅰ)因?yàn)镈E⊥平面ABCD,所以DE⊥AC.因?yàn)锳BCD是正方形,所以AC⊥BD,從而AC⊥平面BDE;(Ⅱ)建立空間直角坐標(biāo)系D﹣xyz,分別求出平面BEF的法向量為和平面BDE的法向量,利用向量法能求出二面角的余弦值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選題)設(shè)正實(shí)數(shù)滿足,則()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,圓.

(Ⅰ)求的取值范圍,并求出圓心坐標(biāo);

(Ⅱ)若圓的半徑為1,過點(diǎn)作圓的切線,求切線的方程;

(Ⅲ)有一動(dòng)圓的半徑為1,圓心在上,若動(dòng)圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51.

(1)當(dāng)一次訂購(gòu)量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰降為51?

(2)設(shè)一次訂購(gòu)量為個(gè),零件的實(shí)際出廠單價(jià)為.寫出函數(shù)的表達(dá)式;

(3)當(dāng)銷售商一次訂購(gòu)500個(gè)零件時(shí),該廠獲得的利潤(rùn)是多少元?如果訂購(gòu)1000個(gè),利潤(rùn)又是多少元?(工廠售出一個(gè)零件的利潤(rùn)=實(shí)際出廠單價(jià)-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·全國(guó)卷Ⅲ文,18)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.

(1)估計(jì)六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某建材商場(chǎng)國(guó)慶期間搞促銷活動(dòng),規(guī)定:顧客購(gòu)物總金額不超過800元,不享受任何折扣;如果顧客購(gòu)物總金額超過800元,則超過800元部分享受一定的折扣優(yōu)惠,并按下表折扣分別累計(jì)計(jì)算:

可以享受折扣優(yōu)惠金額

折扣率

不超過500元的部分

超過500元的部分

若某顧客在此商場(chǎng)獲得的折扣金額為50元,則此人購(gòu)物實(shí)際所付金額為  

A.1500元B.1550元C.1750元D.1800元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中圖象完全相同的是( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是 ( ).

A. 某校高三有8個(gè)班,1班有51人,2班有53人,3班有52人,由此推測(cè)各班人數(shù)都超過50人

B. 由三角形的性質(zhì),推測(cè)空間四面體的性質(zhì)

C. 平行四邊形的對(duì)角線互相平分,菱形是平行四邊形,所以菱形的對(duì)角線互相平分

D. 在數(shù)列{an}中,a1=1,,,,由此歸納出{an}的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)的定義域?yàn)?/span>,且存在實(shí)常數(shù),使得對(duì)于定義域內(nèi)任意,都有成立,則稱此函數(shù)具有“性質(zhì).

1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值的集合,若不具有“性質(zhì)”,請(qǐng)說明理由;

2)已知函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),,求函數(shù)在區(qū)間上的值域;

3)已知函數(shù)既具有“性質(zhì)”,又具有“性質(zhì)”,且當(dāng)時(shí),,若函數(shù)的圖像與直線2017個(gè)公共點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案