三棱錐S-ABC中,側(cè)棱SA,SB,SC兩兩垂直,△SAB,△SBC,△SAC面積分別為1,
32
,3,則此三棱錐外接球表面積為
14π
14π
分析:根據(jù)三角形面積公式,解方程組得SA=2,SB=1,SC=3,進(jìn)而算出以SA、SB、SC為長、寬、高的長方體的對(duì)角線長為
14
,從而得到三棱錐外接球R=
14
2
,最后用球的表面積公式,可得此三棱錐外接球表面積.
解答:解:設(shè)SA=x,SB=y,SC=z,則
因?yàn)椤鱏AB,△SBC,△SAC都是以S為直角頂點(diǎn)的直角三角形,得
1
2
xy=1
1
2
yz=
3
2
1
2
zx=3

解之得:x=2,y=1,z=3即SA=2,SB=1,SC=3,
∵側(cè)棱SA,SB,SC兩兩垂直,
∴以SA、SB、SC為過同一頂點(diǎn)的3條棱作長方體,該長方體的對(duì)角線長為
SA2+SB2+SC2
=
14
,恰好等于三棱錐外接球的直徑
由此可得外接球的半徑R=
14
2
得此三棱錐外接球表面積為S=4πR2=14π
故答案為:14π
點(diǎn)評(píng):本題給出特殊三棱錐,求它的外接球表面積,著重考查了空間垂直關(guān)系的性質(zhì)和多面體的外接球等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在三棱錐S-ABC中∠ACB=90°,SA⊥面ABC,AC=2,BC=
13
,SB=
29

(1)證明SC⊥BC.
(2)求側(cè)面SBC與底面ABC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,SC⊥平面ABC,點(diǎn)P、M分別是SC和SB的中點(diǎn),設(shè)PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°.
(1)求證:平面MAP⊥平面SAC.
(2)求二面角M-AC-B的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M,N分別為AB,SB的中點(diǎn).
(1)證明:AC⊥SB;
(2)求二面角N-CM-B的大;
(3)求點(diǎn)B到平面CMN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,△ABC是邊長為8的正三角形,SA=SC=2
7
,二面角S-AC-B的大小為60°
(1)求證:AC⊥SB;
(2)求三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O為BC中點(diǎn).
(Ⅰ)求點(diǎn)B到平面SAC的距離;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案