(本小題滿(mǎn)分12分)
如圖,已知分別是橢圓)的左、右焦點(diǎn),且橢圓的離心率,也是拋物線(xiàn)的焦點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的直線(xiàn)交橢圓,兩點(diǎn),且,點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,求直線(xiàn)的方程.
解:(Ⅰ)因?yàn)閽佄锞(xiàn)的焦點(diǎn)是
,得,則,
故橢圓的方程為
(Ⅱ)顯然直線(xiàn)的斜率不存在時(shí)不符合題意,可設(shè)直線(xiàn),設(shè),,由于,
,聯(lián)立,,
,……,……②,代入①、②得,
,……③ ,……④ 由③、④得,
,,
(i)若時(shí),,
,,
直線(xiàn)的方程是;
(ii)當(dāng)時(shí),同理可求直線(xiàn)的方程是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知某橢圓的焦點(diǎn)F1(-4,0),F(xiàn)2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線(xiàn)與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同兩點(diǎn)A(x1,y1),C(x2,y2)滿(mǎn)足條件|F2A|,|F2B|,|F2C|成等差數(shù)列.(1)求該橢圓的方程;(2)求弦AC中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓.如圖所示,斜率為且不過(guò)原點(diǎn)的直線(xiàn)交橢圓兩點(diǎn),線(xiàn)段的中點(diǎn)為,射線(xiàn)交橢圓于點(diǎn),交直線(xiàn)于點(diǎn).
(Ⅰ)求的最小值;
(Ⅱ)若?,(i)求證:直線(xiàn)過(guò)定點(diǎn);
(ii)試問(wèn)點(diǎn)能否關(guān)于軸對(duì)稱(chēng)?若能,求出此時(shí)的外接圓方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,且兩個(gè)焦點(diǎn)和短軸的一個(gè)端點(diǎn)是一個(gè)等腰三角形的頂點(diǎn).斜率為的直線(xiàn)過(guò)橢圓的上焦點(diǎn)且與橢圓相交于,兩點(diǎn),線(xiàn)段的垂直平分線(xiàn)與軸相交于點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)試用表示△的面積,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線(xiàn)經(jīng)過(guò)橢圓的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),則該橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P是橢圓C:上的動(dòng)點(diǎn),F(xiàn)1、F2分別為左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),則的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
已知橢圓的兩焦點(diǎn)為,,并且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)已知圓:,直線(xiàn):,證明當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),直線(xiàn)與圓恒相交;并求直線(xiàn)被圓所截得的弦長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)A(5,0)和⊙B:,P是⊙B上的動(dòng)點(diǎn),直線(xiàn)BP與線(xiàn)段AP的垂直平分線(xiàn)交于點(diǎn)Q,則點(diǎn)Q(x,y)所滿(mǎn)足的軌跡方程為 。 ▲ )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的焦點(diǎn)為F1,F(xiàn)2,P為橢圓上一點(diǎn),若,則
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案