【題目】已知A、B、C是圓O上的三個點,CO的延長線與線段BA的延長線交于圓外一點.若 ,其中m,n∈R.則m+n的取值范圍是(
A.(0,1)
B.(﹣1,0)
C.(1,+∞)
D.(﹣∞,﹣1)

【答案】B
【解析】解:∵|OC|=|OB|=|OA|, ,

∴1=m2+n2+2mncos∠AOB

當(dāng)∠AOB=60°時,m2+n2+mn=1,m<0,n>0,即(m+n)2﹣mn=1,即(m+n)2=1+mn<1,

所以(m+n)2<1,

∴﹣1<m+n<1,當(dāng) 趨近射線OD,

由平行四邊形法則 = + =m +n ,此時顯然m<0,n>0,且|m|>|n|,

∴m+n<0,所以m+n的取值范圍(﹣1,0).

故選B.

【考點精析】利用平面向量的基本定理及其意義對題目進行判斷即可得到答案,需要熟知如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)、,使

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a4=6,a6=10.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)等比數(shù)列{bn}各項均為正數(shù),其前n項和Tn , 若b3=a3 , T2=3,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) f(x)=2x﹣ 的定義域為(0,1](a為實數(shù)).
(Ⅰ)當(dāng)a=﹣1時,求函數(shù)y=f(x)的值域;
(Ⅱ)若函數(shù)y=f(x)在定義域上是減函數(shù),求a的取值范圍;
(Ⅲ)求函數(shù)y=f(x)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為2的扇形AOB中,∠AOB=90°,P為 上的一點,若 =2,則 的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 滿足Sn=2an﹣1,n∈N*.?dāng)?shù)列{bn}滿足nbn+1﹣(n+1)bn=n(n+1),n∈N*,且b1=1.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若cn=an ,數(shù)列{cn}的前n項和為Tn , 對任意的n∈N*,都有Tn<nSn﹣a,求實數(shù)a的取值范圍;
(3)是否存在正整數(shù)m,n使b1 , am , bn(n>1)成等差數(shù)列,若存在,求出所有滿足條件的m,n,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中, =(2,﹣2), =(x,y), =(1, ).
(1)若 ,求x,y之間的關(guān)系式;
(2)滿足(1)的同時又有 ,求x,y的值以及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA是南北方向的一條公路,OB是北偏東45°方向的一條公路,某風(fēng)景區(qū)的一段邊界為曲線C.為方便游客光,擬過曲線C上的某點分別修建與公路OA,OB垂直的兩條道路PM,PN,且PM,PN的造價分別為5萬元/百米,40萬元/百米,建立如圖所示的直角坐標(biāo)系xoy,則曲線符合函數(shù)y=x+ (1≤x≤9)模型,設(shè)PM=x,修建兩條道路PM,PN的總造價為f(x)萬元,題中所涉及的長度單位均為百米.

(1)求f(x)解析式;
(2)當(dāng)x為多少時,總造價f(x)最低?并求出最低造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點A(﹣1,0),B(1,1),C(2,0),點P是平面直角坐標(biāo)系xOy上一點,且 =m (m,n∈R),

(1)若m=1,且 ,試求實數(shù)n的值;
(2)若點P在△ABC三邊圍成的區(qū)域(含邊界)上,求m+3n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當(dāng)天的利潤(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認(rèn)為應(yīng)購進16枝還是17枝?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案