15.已知$a>b>0,a+b=1,x=-{(\frac{1}{a})^b},y=1o{g_{ab}}(\frac{1}{a}+\frac{1}),z=1o{g_b}\frac{1}{a}$,則( 。
A.x<z<y??B.x<y<z??C.z<y<x??D.x=y<z??

分析 由a>b>0,a+b=1可得$\frac{1}{2}$<a<1,0<b<$\frac{1}{2}$,從而可判斷x<-1,y=-1,z>-1,問題解決.

解答 解:a>b>0,a+b=1,
∴$\frac{1}{2}$<a<1,0<b<$\frac{1}{2}$,
∴x=-$(\frac{1}{a})^$<-1,y=$lo{g}_{ab}(\frac{1}{a}+\frac{1})$=$\frac{lg\frac{a+b}{ab}}{lgab}$=$\frac{lg(a+b)-lgab}{lgab'}$=-1,z=$lo{g}_\frac{1}{a}$>loga$\frac{1}{a}$=-1
∴x<y<z,
故選:B.

點評 本題考查對數(shù)值大小的比較,關(guān)鍵在于對條件的轉(zhuǎn)化,得到$\frac{1}{2}$<a<1,0<b<$\frac{1}{2}$,著重考查函數(shù)的單調(diào)性與求值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知B1、B2是橢圓短軸的兩個端點,O為橢圓的中心,過左焦點F1作長軸的垂線交橢圓于P,若|OF1|,|F1B2|,|B1B2|成等比數(shù)列,則 $\frac{|O{F}_{2}|}{|P{F}_{2}|}$的值是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知焦點在x軸上的橢圓經(jīng)過點(0,$\sqrt{6}$),焦距為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$[x2-2(2a-1)x+8],a∈R,若f(x)在[a,+∞)上為減函數(shù),則a的取值范圍為(  )
A.(-∞,2]B.(-$\frac{4}{3}$,2]C.(-∞,1]D.(-$\frac{4}{3}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)對任意實數(shù)x,y,均有f(x+y)=f(x)+f(y)+1,若f(1)=2,則f(2)=(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知sinθ<0,tanθ>0.
(1)求θ角的集合;
(2)求$\frac{θ}{2}$終邊所在象限;
(3)試判斷sin$\frac{θ}{2}$cos$\frac{θ}{2}$tan$\frac{θ}{2}$的符號.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)$f(x)={log_{0.5}}({{x^2}-2tx+13})$的值域為(-∞,-2],則實數(shù)t的值為±3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.不等式(-2x-1)(x-1)(x-2)>0的解集為$(-∞,-\frac{1}{2})∪(1,2)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知角α的終邊經(jīng)過點P(4,-3),則sinα+cosα=$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊答案