定義在(-1,1)上的函數(shù)f(x)滿足:對(duì)任意x,y屬于(-1,1),都有f(x)+f(y)=f(
x+y1+xy
).
(1)求證:函數(shù)f(x)是奇函數(shù)!
(2)若當(dāng)x屬于(-1,0)時(shí),有f(x)>0.求證:f(x)在(-1,1)上是減函數(shù).
分析:(1)令x=y=0,可得f(0)=0.令y=-x,可得f(-x)=-f(x),所以函數(shù)f(x)是奇函數(shù).
(2)設(shè)-1<x1<x2<1,則有f(x1)-f(x2) =f(x1) +f(-x2) =
f(x1-x2
1-x1x2
>0,所以f(x)在(-1,1)上是減函數(shù).
解答:解:(1)令x=y=0,得f(0)+f(0)=f(0),∴f(0)=0.
令y=-x,得f(x)+f(-x)=f(0)=0,∴f(-x)=-f(x),
∴函數(shù)f(x)是奇函數(shù).
(2)設(shè)-1<x1<x2<1,
則有f(x1)-f(x2) =f(x1) +f(-x2) =
f(x1-x2
1-x1x2

∵-1<x1<x2<1,∴-1<x1-x2<0,
∴f(x1-x2)>0,0<x1x2<1,
∴f(x1)-f(x2)>0,
∴f(x)在(-1,1)上是減函數(shù).
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(
1
2
)=
2
5

①求函數(shù)f(x)的解析式;
②判斷函數(shù)f(x)在(-1,1)上的單調(diào)性并用定義證明;
③解關(guān)于x的不等式f(log2x-1)+f(log2x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在(-1,1)上的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=2x2-2x,求f(x)在(-1,1)上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若m、n∈[-1,1],m+n≠0,>0.

(1)證明f(x)在[-1,1]上是增函數(shù);

(2)解不等式f(x+)<f().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省青島市即墨一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

函數(shù)f(x)=是定義在(-1,1)的奇函數(shù),且f()=
(1)確定f(x)的解析式;
(2)判斷函數(shù)在(-1,1)上的單調(diào)性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年黑龍江省哈爾濱三中高一(上)段考數(shù)學(xué)試卷(解析版) 題型:解答題

函數(shù)f(x)=是定義在(-1,1)的奇函數(shù),且f()=
(1)確定f(x)的解析式;
(2)判斷函數(shù)在(-1,1)上的單調(diào)性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案