【題目】為了更好地支持“中小型企業(yè)”的發(fā)展,某市決定對部分企業(yè)的稅收進行適當?shù)臏p免,某機構調查了當?shù)氐闹行⌒推髽I(yè)年收入情況,并根據所得數(shù)據畫出了樣本的頻率分布直方圖,下面三個結論:
①樣本數(shù)據落在區(qū)間的頻率為0.45;
②如果規(guī)定年收入在500萬元以內的企業(yè)才能享受減免稅政策,估計有55%的當?shù)刂行⌒推髽I(yè)能享受到減免稅政策;
③樣本的中位數(shù)為480萬元.
其中正確結論的個數(shù)為( )
A.0B.1C.2D.3
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.
(1)求橢圓E的標準方程,
(2)若,,四邊形ABCD內接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著科技的發(fā)展,網購已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在某市的普及情況,某調查機構進行了有關網購的調查,并從參與調查的市民中隨機抽取了男、女各100人進行分析,得到如下所示的統(tǒng)計表.
經常網購 | 偶爾網購或不網購 | 合計 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計 |
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | ||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)完成上表,并根據以上數(shù)據判斷能否在犯錯誤的概率不超過0.01的前提下認為該市市民的網購情況與性別無關.
(2)①現(xiàn)從所抽取的100位女性市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經常網購的概率;
②將頻率視為概率,從該市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數(shù)為X,求隨機變量X的數(shù)學期望和方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c分別是△ABC的內角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= ( )
A. B. 2 C. 4 D.
【答案】B
【解析】
根據正弦定理把轉化為邊的關系,進而根據△ABC的周長,聯(lián)立方程組,可求出a的值.
根據正弦定理,可化為
∵△ABC的周長為,
∴聯(lián)立方程組,
解得a=2.
故選:B
【點睛】
(1)在三角形中根據已知條件求未知的邊或角時,要靈活選擇正弦、余弦定理進行邊角之間的轉化,以達到求解的目的.
(2)求角的大小時,在得到角的某一個三角函數(shù)值后,還要根據角的范圍才能確定角的大小,這點容易被忽視,解題時要注意.
【題型】單選題
【結束】
7
【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調遞增,則k的取值范圍是( )
A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據說,年過半百的笛卡爾擔任瑞典一小公國的公主克里斯蒂娜的數(shù)學老師,日久生情,彼此愛慕,其父國王知情后大怒,將笛卡爾流放回法國,并軟禁公主,笛卡爾回法國后染上黑死病,連連給公主寫信,死前最后一封信只有一個公式:國王不懂,將這封信交給了公主,公主用笛卡爾教她的坐標知識,畫出了這個圖形“心形線”.明白了笛卡爾的心意,登上了國王寶座后,派人去尋笛卡爾,其逝久矣(僅是一個傳說).心形線是由一個圓上的一個定點,當該圓繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名.在極坐標系中,方程表示的曲線就是一條心形線,如圖,以極軸所在直線為軸,極點為坐標原點的直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的極坐標方程;
(2)若曲線與相交于、、三點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修:不等式選講
已知函數(shù)f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且.
(1)求拋物線的方程;
(2)過點作直線交拋物線于,兩點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,直線l的參數(shù)方程為(為參數(shù)),曲線的方程為.以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求直線l和曲線的極坐標方程;
(2)曲線分別交直線和曲線于點,求的最大值及相應的的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com