12.計(jì)算:Sn=$\frac{1}{2×5}$+$\frac{1}{5×8}$+…+$\frac{1}{(3n-1)(3n+2)}$.

分析 由$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}$($\frac{1}{3n-1}$-$\frac{1}{3n+2}$),再由裂項(xiàng)相消求和,計(jì)算即可得到所求.

解答 解:由$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}$($\frac{1}{3n-1}$-$\frac{1}{3n+2}$),
可得Sn=$\frac{1}{2×5}$+$\frac{1}{5×8}$+…+$\frac{1}{(3n-1)(3n+2)}$
=$\frac{1}{3}$($\frac{1}{2}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{8}$+…+$\frac{1}{3n-1}$-$\frac{1}{3n+2}$)
=$\frac{1}{3}$($\frac{1}{2}$-$\frac{1}{3n+2}$)=$\frac{n}{2(3n+2)}$.

點(diǎn)評 本題考查數(shù)列的求和方法:裂項(xiàng)相消求和,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=$log_{\frac{1}{3}}}$(x2-5x+6)的單調(diào)遞增區(qū)間為(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知過點(diǎn)A($\sqrt{3}$,1)和B(5,12),以x軸正半軸為始邊按照逆時(shí)針旋轉(zhuǎn)所形成的最小正角分別為α,β.
(1)求sinα和cosβ;    
(2)求sin(2α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)a>0且a≠1,命題P:函數(shù)f(x)=loga(1-x)-loga(1+x)為減函數(shù),命題Q:已知集合M={x|x2+(a+2)x+1=0}∩{x|x>0}=∅,若P∧Q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知定義在R上的函數(shù)f(x)滿足f(x-1)-1為奇函數(shù),當(dāng)x≥-1時(shí),f(x)的值域?yàn)閇1,2),則 F(x)=f(x-2)+1的值域是( 。
A.(0,2)B.(1,3)C.(2,4)D.(3,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.判斷函數(shù)f(x)和g(x)是不是同一個(gè)函數(shù):f(x)=1n$\sqrt{x-1}$,g(x)=$\frac{1}{2}$1n(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=x4+$\frac{1}{x^4}$的圖象關(guān)于 ( 。⿲ΨQ.
A.原點(diǎn)B.y軸C.x軸D.直線y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列{an}滿足an=$\frac{1}{n(n+1)}$(n∈N*,則數(shù)列{an}的前100項(xiàng)和為$\frac{100}{101}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)若f(x)=-x2+2ax在(-∞,2)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)已知函數(shù)f(x)=-x2+2ax的增區(qū)間為(-∞,2),求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案