19.設(shè)全集U={(x,y)|y=x+1,x,y∈R},M={(x,y)|$\frac{y-3}{x-2}$=1},則∁UM={(2,3)}.

分析 化簡(jiǎn)集合M,求出它的補(bǔ)集即可.

解答 解:全集U={(x,y)|y=x+1,x,y∈R},
M={(x,y)|$\frac{y-3}{x-2}$=1}={(x,y)|y=x+1且x≠2},
UM={(2,3)}.
故答案為:{(2,3)}.

點(diǎn)評(píng) 本題考查了補(bǔ)集的定義與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知x,y,z滿足方程(x-3)2+(y-4)2+(z+5)2=2,則x2+y2+z2的最小值是32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$(a>0,a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使xf(x)>0在定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知平面直角坐標(biāo)系xOy中,A(6,2$\sqrt{3}$),B(4,4),圓C是△OAB的外接圓.
(1)求圓C的一般方程;
(2)若過(guò)點(diǎn)P(0,4$\sqrt{3}$)的直線l與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)y=f(x)的定義域是[0,2],則函數(shù)y=$\frac{f(2x)}{\sqrt{1-x}}$+lgx的定義域是(  )
A.[0,1]B.[0,1)C.[0,1)∪(1,4]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在平面直角坐標(biāo)系中,經(jīng)過(guò)原點(diǎn)和點(diǎn)$(1,-\sqrt{3})$的直線的傾斜角α=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知:集合A={x|3<x≤6),B={x|m≤x≤2m+l}
(1)若m=2,求A∩B,A∪B;
(2)若A⊆B,求實(shí)數(shù)m的取值范圍;
(3)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,在△ABC中,$\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}$,$\overrightarrow{AN}=\frac{1}{4}\overrightarrow{AC}$,BN與CM交于點(diǎn)E,若$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AC}$,則x+y=$\frac{5}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若關(guān)于x的方程mx2+2x+1=0至少有一個(gè)負(fù)根,則實(shí)數(shù)m的取值范圍是(-∞,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案