【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求的普通方程及的直角坐標(biāo)方程;

(2)若曲線與曲線分別交于點(diǎn),,求的最大值.

【答案】(1),;(2)

【解析】

1)在曲線的參數(shù)方程中消去參數(shù)可得出曲線的普通方程,在曲線的極坐標(biāo)方程兩邊同時乘以,并代入可得出曲線的直角坐標(biāo)方程;

2)由曲線的參數(shù)方程得出其極坐標(biāo)方程為,并設(shè)點(diǎn)的極坐標(biāo)分別為、,將曲線的極坐標(biāo)方程分別代入曲線、的表達(dá)式,求出、
關(guān)于的表達(dá)式,然后利用三角恒等變換公式與三角函數(shù)基本性質(zhì)求出的最大值。

1)由消去參數(shù)的普通方程為:;

,得的直角坐標(biāo)方程為:,

2的極坐標(biāo)方程為:,的極坐標(biāo)方程為:

分別代入的極坐標(biāo)方程得:,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行六面體ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求異面直線A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(α為參數(shù))經(jīng)過伸縮變換得到曲線C2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

(1)C2的普通方程;

(2)設(shè)曲線C3的極坐標(biāo)方程為,且曲線C3與曲線C2相交于MN兩點(diǎn),點(diǎn)P(10),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地政府為了幫助當(dāng)?shù)剞r(nóng)民脫貧致富,開發(fā)了一種新型水果類食品,該食品生產(chǎn)成本為每件8.當(dāng)天生產(chǎn)當(dāng)天銷售時,銷售價為每件12元,當(dāng)天未賣出的則只能賣給水果罐頭廠,每件只能賣5.每天的銷售量與當(dāng)天的氣溫有關(guān),根據(jù)市場調(diào)查,若氣溫不低于,則銷售5000件;若氣溫位于,則銷售3500件;若氣溫低于,則銷售2000.為制定今年8月份的生產(chǎn)計劃,統(tǒng)計了前三年8月份的氣溫范圍數(shù)據(jù),得到下面的頻數(shù)分布表:

氣溫范圍

(單位:)

天數(shù)

4

14

36

21

15

以氣溫范圍位于各區(qū)間的頻率代替氣溫范圍位于該區(qū)間的概率.

(1)求今年8月份這種食品一天銷售量(單位:件)的分布列和數(shù)學(xué)期望值;

(2)設(shè)8月份一天銷售這種食品的利潤為(單位:元),當(dāng)8月份這種食品一天生產(chǎn)量(單位:件)為多少時,的數(shù)學(xué)期望值最大,最大值為多少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,外的點(diǎn)軸的右側(cè)運(yùn)動,到圓上的點(diǎn)的最小距離等于它到軸的距離,的軌跡為.

1)求的方程;

2)過點(diǎn)的直線交,兩點(diǎn),為直徑的圓與平行于軸的直線相切于點(diǎn),線段于點(diǎn),證明:的面積是的面積的四倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,的中點(diǎn),交于點(diǎn)平面,,

(1)求證;平面平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩個快遞公司的工作狀況,假設(shè)同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),制表如下:

甲公司某員工A


乙公司某員工B

3

9

6

5

8

3

3

2

3

4

6

6

6

7

7







0

1

4

4

2

2

2



每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:

甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7.

1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工B的每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為(單位:元),求的分布列和數(shù)學(xué)期望;

3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中錯誤的是

A. 若命題p為真命題,命題q為假命題,則命題“pV(q)”為真命題

B. 命題“若a+b≠7,則a≠2或b≠5”為真命題

C. 命題“若x2-x=0,則x=0或x=1”的否命題為“若x2-x=0,則x≠0且x≠1”

D. 命題p: x>0,sinx>2x-1,則p為x>0,sinx≤2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在斜三棱柱(側(cè)棱不垂直于底面)中,側(cè)面底面,底面是邊長為2的正三角形,,.

1)求證:

2)求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案