(10分)拋物線上有兩點(diǎn)(0為坐標(biāo)原點(diǎn))
(1)求證:  (2)若,求AB所在直線方程。
(1)證明:見解析;(2) AB的方程為
本試題主要是考查了拋物線的方程以及性質(zhì)的運(yùn)用。結(jié)合向量的數(shù)量積公式得到。
(1)設(shè)  ∵得到坐標(biāo)關(guān)系式,然后利用得到得到證明
(2)因?yàn)椤?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232456674480.png" style="vertical-align:middle;" />=-2 ∴聯(lián)立方程組得到求解坐標(biāo),進(jìn)而得到AB的方程。
(1)證明:設(shè)  ∵  
 而


(2)∵=-2 ∴ 解得: ∴
   故AB的方程為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右頂點(diǎn)為,過的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為

(I)求橢圓的方程;
(II)設(shè)拋物線的焦點(diǎn)為F,過F點(diǎn)的直線交拋物線與A、B兩點(diǎn),過A、B兩點(diǎn)分別作拋物線的切線交于Q點(diǎn),且Q點(diǎn)在橢圓上,求面積的最值,并求出取得最值時(shí)的拋物線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的焦點(diǎn)為,直線交于、兩點(diǎn).則="________."

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線與雙曲線有且只有一個(gè)公共點(diǎn),則     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從拋物線上一點(diǎn)引其準(zhǔn)線的垂線,垂足為,設(shè)拋物線的焦點(diǎn)為,且,則的面積為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知長(zhǎng)方形,,以的中點(diǎn)
原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.
(1)求以A、B為焦點(diǎn),且過C、D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓上任意一點(diǎn)為P,在x軸上有一個(gè)動(dòng)點(diǎn)Q(t,0),其中,探究的最
小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點(diǎn)分別是,直線與橢圓交于兩點(diǎn),.當(dāng)時(shí),M恰為橢圓的上頂點(diǎn),此時(shí)△的周長(zhǎng)為6.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左頂點(diǎn)為A,直線與直線分別相交于點(diǎn),,問當(dāng)
變化時(shí),以線段為直徑的圓被軸截得的弦長(zhǎng)是否為定值?若是,求出這個(gè)定值,
若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點(diǎn),過的直線與E相交于A、B兩點(diǎn),且,成等差數(shù)列。
(1)求的周長(zhǎng)
(2)求的長(zhǎng)                       
(3)若直線的斜率為1,求b的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y2=2px的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則p的值為      .

查看答案和解析>>

同步練習(xí)冊(cè)答案