【題目】若函數f(x)=ax2﹣(2a+1)x+a+1對于a∈[﹣1,1]時恒有f(x)<0,則實數x的取值范圍是( )
A.(1,2)
B.(﹣∞,1)∪(2,+∞)
C.(0,1)
D.(﹣∞,0)∪(1,+∞)
【答案】A
【解析】解:函數可整理為f(x)=(x2﹣x+1)a+1﹣x
∵對于a∈[﹣1,1]時恒有f(x)<0,
∴(x2﹣x+1)a+1﹣x<0恒成立.
令g(a)=(x2﹣2x+1)a+1﹣x
則函數g(a)在區(qū)間[﹣1,1]上的最大值小于0,
∵g(a)為一次函數,且一次項系數x2﹣2x+1>0,
∴函數g(a)在區(qū)間[﹣1,1]上單調遞增,
∴g(a)max=g(1)=x2﹣2x+1+1﹣x=x2﹣3x+2<0
解得1<x<2
故選:A
【考點精析】根據題目的已知條件,利用二次函數的性質的相關知識可以得到問題的答案,需要掌握當時,拋物線開口向上,函數在上遞減,在上遞增;當時,拋物線開口向下,函數在上遞增,在上遞減.
科目:高中數學 來源: 題型:
【題目】已知點P是圓F1:(x﹣1)2+y2=8上任意一點,點F2與點F1關于原點對稱,線段PF2的垂直平分線分別與PF1,PF2交于M,N兩點.
(1)求點M的軌跡C的方程;
(2)過點G(0, )的動直線l與點的軌跡C交于A,B兩點,在y軸上是否存在定點Q,使以AB為直徑的圓恒過這個點?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖象在處的切線方程為,其中是自然對數的底數.
(1)若對任意的,都有成立,求實數的取值范圍;
(2)若函數的兩個零點為,試判斷的正負,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A,B,C為銳角△ABC的內角, =(sinA,sinBsinC), =(1,﹣2), ⊥ .
(1)tanB,tanBtanC,tanC能否構成等差數列?并證明你的結論;
(2)求tanAtanBtanC的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2 ,PA=4且E為PB的中點.
(1)求證:CE∥平面PAD;
(2)求直線CE與平面PAC所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com