4.已知sin($\frac{π}{2}$+θ)=$\frac{1}{3}$,則2sin2$\frac{θ}{2}$-1等于( 。
A.$\frac{\sqrt{2}}{3}$B.-$\frac{1}{3}$C.$\frac{1}{3}$D.$±\frac{2\sqrt{2}}{3}$

分析 利用誘導(dǎo)公式和二倍角公式進(jìn)行化簡(jiǎn)、求值.

解答 解:∵$sin(\frac{π}{2}+θ)=\frac{1}{3}$,
∴cosθ=$\frac{1}{3}$,
∴$2si{n}^{2}\frac{θ}{2}-1$=-cosθ=-$\frac{1}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)求值,考查計(jì)算能力,屬于基礎(chǔ)題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.眾所周知,乒乓球是中國(guó)的國(guó)球,乒乓球隊(duì)內(nèi)部也有著很?chē)?yán)格的競(jìng)爭(zhēng)機(jī)制,為了參加國(guó)際大賽,種子選手甲與三位非種子選手乙、丙、丁分別進(jìn)行一場(chǎng)內(nèi)部對(duì)抗賽,按以往多次比賽的統(tǒng)計(jì),甲獲勝的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,且各場(chǎng)比賽互不影響.
(1)若甲至少獲勝兩場(chǎng)的概率大于$\frac{7}{10}$,則甲入選參加國(guó)際大賽參賽名單,否則不予入選,問(wèn)甲是否會(huì)入選最終的大名單?
(2)求甲獲勝場(chǎng)次X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.tan660°的值是(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在平面直角坐標(biāo)系內(nèi),若曲線(xiàn) C:x2+y2+2ax-4ay+5a2-4=0上所有的點(diǎn)均在第二象限內(nèi),則實(shí)數(shù)a取值范圍為( 。
A.(1,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(I)已知$cos(π+α)=-\frac{1}{2}$,α為第一象限角,求$cos(\frac{π}{2}+α)$的值;
(II)已知$cos(\frac{π}{6}-β)=\frac{1}{3}$,求$cos(\frac{5π}{6}+β)•sin(\frac{2π}{3}-β)$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ax2-x+2a-1(a為實(shí)常數(shù)).
(1)設(shè)h(x)=$\frac{f(x)}{x}$,若a=-1,求證:函數(shù)h(x)在區(qū)間$(0,\sqrt{3}]$上是增加的;
(2)若函數(shù)f(x)在區(qū)間[4,5]上是單調(diào)遞減的,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=|x-1|+|x-a|.
(1)當(dāng)a=3時(shí),求不等式f(x)≥5的解集;
(2)若f(x)≥2對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.離心率為$\frac{3}{4}$的橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),P∈C,且P到橢圓的兩個(gè)焦點(diǎn)距離之和為16,則,橢圓C的方程為$\frac{x^2}{64}+\frac{y^2}{28}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.給出以下四個(gè)結(jié)論,正確的個(gè)數(shù)為( 。
①函數(shù)f(x)=$\sqrt{3}$sin2x+cos2x圖象的對(duì)稱(chēng)中心是($\frac{kπ}{2}$-$\frac{π}{6}$,0)k∈Z;
②在△ABC中,“A>B”是“cos2A<cos2B”的充分不必要條件;
③在△ABC中,“bcosA=acosB”是“△ABC為等邊三角形”的必要不充分條件;
④若將函數(shù)f(x)=sin(2x-$\frac{π}{3}$)的圖象向右平移φ(φ>0)個(gè)單位后變?yōu)榕己瘮?shù),則φ的最小值是$\frac{π}{12}$.
A.0B.2C.3D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案