已知函數(shù)f(x)定義在[-1,1]上,設(shè)g(x)=f(x-c)和h(x)=f(x-c2)兩個(gè)函數(shù)的定義域分別為A和B,若A∩B=∅,則實(shí)數(shù)c的取值集合為
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)
分析:根據(jù)復(fù)合函數(shù)的定義域的求法先求出g(x)和h(x)的定義域,A,B,然后根據(jù)A∩B=∅,求出實(shí)數(shù)c的取值集合.
解答:解:∵函數(shù)f(x)定義域?yàn)閇-1,1],
∴由-1≤x-c≤1得c-1≤x≤1+c,即A=[c-1,c+1].
由-1≤x-c2≤1得c2-1≤x≤1+c2,即B=[c2-1,c2+1].
若A∩B=∅,
則c2-1>c+1  或c2+1<c-1,
即c2-c-2>0  ①或c2-c+2<0,②
由①解得c>2或c<-1.
由②知不等式無(wú)解.
∴c>2或c<-1.
故答案為:(-∞,-1)∪(2,+∞).
點(diǎn)評(píng):本題主要考查復(fù)合函數(shù)定義域的求法,以及集合關(guān)系的應(yīng)用,比較綜合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義在(-1,1)上,對(duì)于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且當(dāng)x<0時(shí),f(x)>0.
(Ⅰ)驗(yàn)證函數(shù)f(x)=ln
1-x
1+x
是否滿(mǎn)足這些條件;
(Ⅱ)判斷這樣的函數(shù)是否具有奇偶性和其單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義在R上,并且對(duì)于任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且x≠y時(shí),f(x)≠f(y),x>0時(shí),有f(x)>0.
(1)判斷f(x)的奇偶性;
(2)若f(1)=1,解關(guān)于x的不等式f(x)-f(
1x-1
)≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•連云港二模)已知函數(shù)f(x)定義在正整數(shù)集上,且對(duì)于任意的正整數(shù)x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(3)=6,則f(2009)=
4018
4018

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義在區(qū)間(-1,1)上,f(
1
2
)=-1,且當(dāng)x,y∈(-1,1)時(shí),恒有f(x)-f(y)=f(
x-y
1-xy
),又?jǐn)?shù)列{an}滿(mǎn)足:a1=
1
2
,an+1=
2an
1+
a
2
n

(I)證明:f(x)在(-1,1)上為奇函數(shù);
(II)求f(an)關(guān)于n的函數(shù)解析式;
(III)令g(n)=f(an)且數(shù)列{an}滿(mǎn)足bn=
1
g(n)
,若對(duì)于任意n∈N+,都有b1+b2+…+bnt2-3t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義在R上,對(duì)任意的x∈R,f(x+1001)=
2
f(x)
+1
,已知f(11)=1,則f(2013)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案