已知點P(x,y)在橢圓
x2
2
+y2=1
上運動,設(shè)d=
x2+y2-4y+4
-
2
2
x
,則d的最小值為
 
考點:橢圓的參數(shù)方程,函數(shù)的最值及其幾何意義,橢圓的簡單性質(zhì)
專題:選作題,坐標系和參數(shù)方程
分析:設(shè)x=
2
cosα,y=sinα,代入d=
x2+y2-4y+4
-
2
2
x
,利用三角函數(shù)知識,即可求出d的最小值
解答: 解:設(shè)x=
2
cosα,y=sinα,則
d=
x2+y2-4y+4
-
2
2
x
=
2cos2α+sin2α-4sinα+4
-cosα=
10-(sinα+2)2
-cosα
∴cosα=1,sinα=0時,d的最小值為
6
-1.
故答案為:
6
-1.
點評:本題考查橢圓的參數(shù)方程,考查三角函數(shù)知識,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是偶函數(shù),當x≤0時,f(x)=x(x+1),則當x>0時f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)滿足f(x2+1)=x4-1,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)為R上的奇函數(shù),當x≥0時,f(x)=2x+2x+b(b為常數(shù))(b為常數(shù)),則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列4個結(jié)論中:
①x3<-8的必要不充分條件是x2>4;
②在△ABC中,AB2+AC2=BC2是△ABC為直角三角形的充要條件;
③若a,b∈R,則“a2+b2≠0”是“a,b不全為0”的充要條件;
④“9<k<15”是“方程
x2
15-k
+
y2
k-9
=1表示橢圓”的必要不充分條件.
正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
1
3
x3+x2+mx+3
在R上單調(diào)遞增,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個內(nèi)角A、B、C成等差數(shù)列,且AB=2,AC=3,則cosC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若6名學生排成一列,則學生甲、乙、丙三人互不相鄰的排位方法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosα,-2),
b
=(sinα,1),且
a
b
,則tanα=
 

查看答案和解析>>

同步練習冊答案