【題目】如圖,在平行四邊形中,.現(xiàn)沿對角線折起,使點到達點.點、分別在、上,且、、、四點共面.

(1)求證:;

(2)若平面平面,平面與平面夾角為,求與平面所成角的正弦值.

【答案】(1)見證明;(2)

【解析】

(1)本題首先可以設(shè),通過題意即可得出的長,然后根據(jù)余弦定理即可計算出的長并根據(jù)勾股定理判斷出,最后根據(jù)線面平行的相關(guān)性質(zhì)即可得出并證得

(2)本題可以通過建立空間直角坐標系然后利用平面的法向量來求出與平面所成角的正弦值。

(1)不妨設(shè),則,

中,根據(jù)余弦定理可得,計算得

因為,所以.

因為,且、、四點共面,所以平面.

又平面平面,所以.

,故.

(2)因為平面平面,且,所以平面,

因為,所以平面,,

因為,平面與平面夾角為,所以

從而在中,易知的中點,

如圖,建立空間直角坐標系,

,,,,,

,,

設(shè)平面的一個法向量為,則由,

,令,得.

設(shè)與平面所成角為,則。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點為,下頂點為,上頂點為是等邊三角形.

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)直線,過點且斜率為的直線與橢圓交于點 異于點,線段的垂直平分線與直線交于點,與直線交于點,若.

(ⅰ)求的值;

(ⅱ)已知點,點在橢圓上,若四邊形為平行四邊形,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,已知曲線C1(t為參數(shù)),C2(m為參數(shù)).

(1)將C1,C2的方程化為普通方程,并說明它們分別表示什么曲線;

(2)設(shè)曲線C1與C2的交點分別為A,B,O為坐標原點,求△OAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在無窮數(shù)列中,是給定的正整數(shù),,

(Ⅰ)若,寫出的值;

(Ⅱ)證明:數(shù)列中存在值為的項;

(Ⅲ)證明:若互質(zhì),則數(shù)列中必有無窮多項為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列三個正方體中,均為所在棱的中點,過作正方體的截面.在各正方體中,直線與平面的位置關(guān)系描述正確的是

A. 平面的有且只有①;平面的有且只有②③

B. 平面的有且只有②;平面的有且只有①

C. .平面的有且只有①;平面的有且只有②

D. 平面的有且只有②;平面的有且只有③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,側(cè)棱AA1⊥底面ABCD,E為棱AA1的中點,AB=2AA1=3

(Ⅰ)求證:A1C∥平面BDE;

(Ⅱ)求證:BDA1C

(Ⅲ)求三棱錐A-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上的小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,直線:交拋物線兩點,

(1)若的中點為,直線的斜率為,證明:為定值;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 離心率等于,、是橢圓上的兩點.

(1)求橢圓的方程;

(2)是橢圓上位于直線兩側(cè)的動點.當(dāng)運動時,滿足,試問直線的斜率是否為定值?如果為定值,請求出此定值;如果不是定值,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案