已知△ABC中,內(nèi)角A、B、C的對(duì)邊的邊長(zhǎng)為a、b、c,且bcosC=(2a-c)cosB,則y=cos2A+cos2C的最小值為_(kāi)_______.


分析:△ABC中,由正弦定理可求得cosB=,從而求得 B=,A+C=.利用兩角和差的正弦公式,二倍角公式化簡(jiǎn) y=cos2A+cos2C=1-sin(2A-),再由
-<2A-,求得-<sin(2A-)≤1,由此可得y的最小值.
解答:△ABC中,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB.
因?yàn)?<A<π,所以sinA≠0,∴cosB=,∴B=,A+C=
∴2A+2C=,則y=cos2A+cos2C=+=+=1+[cos2A-sin2A]
=1-sin(2A-).
∵0<2A<,∴-<2A-,則-<sin(2A-)≤1,
故y=cos2A+cos2C的最小值為 1-=,
故答案為
點(diǎn)評(píng):本題主要考查正弦定理的應(yīng)用,兩角和差的正弦公式,二倍角公式以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知a,b,c成等比數(shù)列,cosB=
3
4

(Ⅰ)求
1
tanA
+
1
tanC
的值;
(Ⅱ)設(shè)
BA
BC
=
3
2
,求a+c
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,滿足A<B<C,且sinA:sinB:sinC=5:7:k.
(1)已知k=11,求△ABC的最大角的余弦值;
(2)若a=10,且△ABC為鈍角三角形,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,內(nèi)角A、B、C的對(duì)邊的邊長(zhǎng)為a、b、c,且bcosC=(2a-c)cosB,則y=cos2A+cos2C的最小值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,內(nèi)角A,B,C對(duì)邊分別為a,b,c,a=1, b=
3
, cosC=-
3
3

(1)求△ABC的面積;
(2)求sin(B-A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,內(nèi)角A、B、C所對(duì)邊長(zhǎng)分別為a、b、c,A=
π6
,b=2acosB

(Ⅰ)求B;
(Ⅱ)若a=2.求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案