【題目】某商場進(jìn)行抽獎(jiǎng)促銷活動(dòng),抽獎(jiǎng)箱中有大小完全相同的4個(gè)小球,分別標(biāo)有“A”“B”“C”“D”.顧客從中任意取出1個(gè)球,記下上面的字后放回箱中,再從中任取1個(gè)球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“D”字球,則停止取球.獲獎(jiǎng)規(guī)則如下:依次取到標(biāo)有““A”“B”“C”“D”字的球?yàn)橐坏泉?jiǎng);不分順序取到標(biāo)有“A”“B”“C”“D”字的球,為二等獎(jiǎng);取到的4個(gè)球中有標(biāo)有“A”“B”“C”三個(gè)字的球?yàn)槿泉?jiǎng).
(1)求分別獲得一、二、三等獎(jiǎng)的概率;
(2)設(shè)摸球次數(shù)為,求的分布列和數(shù)學(xué)期望.
【答案】(1)(2)見解析,
【解析】
(1)設(shè)“摸到一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)”分別為事件A,B,C,每次摸球相互獨(dú)立,每個(gè)球被摸到的概率為,由事件的相互獨(dú)立性性質(zhì)求,先由排列方式計(jì)算事件B的基本事件個(gè)數(shù),再由古典概型求概率方式求,最后三等獎(jiǎng)的情況有: “A,A,B,C”;“A,B,B,C”;“A,B,C,C”三種情況,由相互獨(dú)立性求概率即可;
(2)由相互獨(dú)立性計(jì)算的取值為1、2、3、4時(shí)的概率,并列出對(duì)應(yīng)的分布列,進(jìn)而由均值計(jì)算公式求得均值.
(1)設(shè)“摸到一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)”分別為事件A,B,C,每次摸球相互獨(dú)立,每個(gè)球被摸到的概率為,
則依次取到標(biāo)有““A”“B”“C”“D”字的球的概率, 不分順序取到標(biāo)有“A”“B”“C”“D”字的球時(shí),前3次全排列“A”“B”“C”最后一次為“D”,再減去“一等獎(jiǎng)”的1次,即基本事件有個(gè),則概率
三等獎(jiǎng)的情況有: “A,A,B,C”;“A,B,B,C”;“A,B,C,C”三種情況.
則
(2)設(shè)摸球的次數(shù)為,則的可能取值為1、2、3、4.
,,,
故取球次數(shù)的分布列為
1 | 2 | 3 | 4 | |
所以數(shù)學(xué)期望為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】發(fā)展“會(huì)員”、提供優(yōu)惠,成為不少實(shí)體店在網(wǎng)購沖擊下吸引客流的重要方式.某連鎖店為了吸引會(huì)員,在2019年春節(jié)期間推出一系列優(yōu)惠促銷活動(dòng).抽獎(jiǎng)返現(xiàn)便是針對(duì)“白金卡會(huì)員”、“金卡會(huì)員”、“銀卡會(huì)員”、“基本會(huì)員”不同級(jí)別的會(huì)員享受不同的優(yōu)惠的一項(xiàng)活動(dòng):“白金卡會(huì)員”、“金卡會(huì)員”、“銀卡會(huì)員”、“基本會(huì)員”分別有4次、3次、2次、1次抽獎(jiǎng)機(jī)會(huì).抽獎(jiǎng)機(jī)如圖:抽獎(jiǎng)?wù)叩谝淮伟聪鲁楠?jiǎng)鍵,在正四面體的頂點(diǎn)出現(xiàn)一個(gè)小球,再次按下抽獎(jiǎng)鍵,小球以相等的可能移向鄰近的頂點(diǎn)之一,再次按下抽獎(jiǎng)鍵,小球又以相等的可能移向鄰近的頂點(diǎn)之一……每一個(gè)頂點(diǎn)上均有一個(gè)發(fā)光器,小球在某點(diǎn)時(shí),該點(diǎn)等可能發(fā)紅光或藍(lán)光,若出現(xiàn)紅光則獲得2個(gè)單位現(xiàn)金,若出現(xiàn)藍(lán)光則獲得3個(gè)單位現(xiàn)金.
(1)求“銀卡會(huì)員”獲得獎(jiǎng)金的分布列;
(2)表示第次按下抽獎(jiǎng)鍵,小球出現(xiàn)在點(diǎn)處的概率.
①求,,,的值;
②寫出與關(guān)系式,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點(diǎn).
(1)設(shè)P是上的一點(diǎn),且AP⊥BE,求∠CBP的大;
(2)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物研究所為研發(fā)一種新疫苗,在200只小白鼠身上進(jìn)行科研對(duì)比實(shí)驗(yàn),得到如下統(tǒng)計(jì)數(shù)據(jù):
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射疫苗 | 30 | ||
注射疫苗 | 70 | ||
總計(jì) | 100 | 100 | 200 |
現(xiàn)從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.
(Ⅰ)能否有的把握認(rèn)為注射此種疫苗有效?
(Ⅱ)在未注射疫苗且未感染病毒與注射疫苗且感染病毒的小白鼠中,分別抽取3只進(jìn)行病例分析,然后從這6只小白鼠中隨機(jī)抽取2只對(duì)注射疫苗情況進(jìn)行核實(shí),求抽到的2只均是注射疫苗且感染病毒的小白鼠的概率.
附:,,
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為,則f()的值為( )
A.﹣1B.1C..D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|﹣|x﹣5|.
(1)當(dāng)a=2時(shí),求證:﹣3≤f(x)≤3;
(2)若關(guān)于x的不等式f(x)≤x2﹣8x+20在R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,已知可引起感冒以及中東呼吸綜合征和嚴(yán)重急性呼吸綜合征等較嚴(yán)重疾。衲瓿醭霈F(xiàn)并在全球蔓延的新型冠狀病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.
某藥物研究所為篩查該種病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有(,且)份血液樣本,每個(gè)樣本取到的可能性相等,有以下兩種檢驗(yàn)方式:
方式一:逐份檢驗(yàn)則需要檢驗(yàn)次;
方式二:混合檢驗(yàn),將份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,則這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為.
(1)假設(shè)有6份血液樣本,其中只有2份樣本為陽性,從中任取3份樣本進(jìn)行醫(yī)學(xué)研究,求至少有1份為陽性樣本的概率;
(2)假設(shè)將(且)份血液樣本進(jìn)行檢驗(yàn),記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為;
①運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求關(guān)于的函數(shù)關(guān)系式;
②若與干擾素計(jì)量相關(guān),其中數(shù)列滿足,當(dāng)時(shí),試討論采用何種檢驗(yàn)方式更好?
參考數(shù)據(jù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com