在△ABC中,||=2,||=3,,且△ABC的面積為,則∠BAC等于( )
A.60°或120°
B.120°
C.150°
D.30°或150°
【答案】分析:由題意可得∠BAC 為鈍角,且 ×2×3×sin∠BAC=,解得sin∠BAC=,從而得到∠BAC 的值.
解答:解:∵在△ABC中,|=2,||=3,,且△ABC的面積為
∴∠BAC 為鈍角,且 ×2×3×sin∠BAC=,解得sin∠BAC=,故∠BAC=150°,
故選C.
點(diǎn)評(píng):本題主要考查兩個(gè)向量的數(shù)量積的定義,已知三角函數(shù)值求角的大小,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,S是該三角形的面積,已知向量
p
=(1,2sinA)
,
q
=(sinA,1+cosA)
,且滿足
p
q

(1)求角A的大。唬2)若a=
3
,S=
3
3
4
,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,滿足
AB
AC
,|
AB
|=3,|
AC
|=4
,點(diǎn)M在線段BC上.
(1)M為BC中點(diǎn),求
AM
BC
的值;
(2)若|
AM
|=
6
5
5
,求BM:BC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若sinB+cosB=
3
-1
2

(1)求角B的大;
(2)又若tanA+tanC=3-
3
,且∠A>∠C,求角A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知sinAsinBcosC=sinAsinCcosB+sinBsinCcosA,若a、b、c分別是角A、B、C所對(duì)的邊,則
abc2
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若A=
C
2
,求證:
1
3
c-a
b
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案