某醫(yī)藥研究所開發(fā)一種新藥,據(jù)監(jiān)測(cè),如果成人按規(guī)定劑量服用該藥,服藥后每毫升血液中的含藥量與服藥后的時(shí)間之間近似滿足如圖所示的曲線.其中是線段,曲線段是函數(shù)是常數(shù)的圖象.

(1)寫出服藥后每毫升血液中含藥量關(guān)于時(shí)間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定:每毫升血液中含藥量不少于時(shí)治療有效,假若某病人第一次服藥為早上,為保持療效,第二次服藥最遲是當(dāng)天幾點(diǎn)鐘?
(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥后再過,該病人每毫升血液中含藥量為多少?

(1);(2)上午;(3)

解析試題分析:(1)注意觀察圖形,區(qū)分清楚每一段圖形所表示的函數(shù)表達(dá)式;(2)顯然第二次服藥時(shí)間應(yīng)該在第二段曲線上,有;(3)第二次服藥后3,血液中含藥量包含第一次服藥的剩余量和第二次服藥的剩余量.
試題解析:(1)當(dāng)時(shí),;             2分
當(dāng)時(shí),把代如,得,解得,
.                 5分
(2)設(shè)第一次服藥最遲過小時(shí)服第二次藥,則解得,即第一次服藥后后服第二次藥,也即上午服藥;     9分
(3)第二次服藥后,每毫升血液中含第一次服藥后的剩余藥量為:

含第二次所服的藥量為:.所以
故該病人每毫升血液中的喊藥量為.         13分
考點(diǎn):函數(shù)的圖象與函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中是實(shí)數(shù),設(shè)為該函數(shù)的圖象上的兩點(diǎn),且.
⑴指出函數(shù)的單調(diào)區(qū)間;
⑵若函數(shù)的圖象在點(diǎn)處的切線互相垂直,且,求的最小值;
⑶若函數(shù)的圖象在點(diǎn)處的切線重合,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種汽車的購(gòu)車費(fèi)用是10萬元,每年使用的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)約為萬元,年維修費(fèi)用第一年是萬元,第二年是萬元,第三年是萬元,…,以后逐年遞增萬元汽車的購(gòu)車費(fèi)用、每年使用的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)、維修費(fèi)用的和平均攤到每一年的費(fèi)用叫做年平均費(fèi)用.設(shè)這種汽車使用年的維修費(fèi)用的和為,年平均費(fèi)用為.
(1)求出函數(shù),的解析式;
(2)這種汽車使用多少年時(shí),它的年平均費(fèi)用最?最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)判斷函數(shù)的奇偶性,并說明理由。
(2)若,求使成立的集合。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

不用計(jì)算器求下列各式的值:
(1);
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

化簡(jiǎn)或求值:
(1);
(2)計(jì)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)集合
(1)若求函數(shù)的解析式;
(2)若,且設(shè)在區(qū)間上的最大值、最小值分別為,記,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,為其反函數(shù).
(Ⅰ)說明函數(shù)圖象的關(guān)系(只寫出結(jié)論即可);
(Ⅱ)證明的圖象恒在的圖象的上方;
(Ⅲ)設(shè)直線、均相切,切點(diǎn)分別為()、(),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè).
(1)請(qǐng)寫出的表達(dá)式(不需證明);
(2)求的極小值;
(3)設(shè)的最大值為,的最小值為,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案