(本小題滿分12分)已知函數(shù).
(Ⅰ)設(shè),討論的單調(diào)性;
(Ⅱ)若對(duì)任意恒有,求的取值范圍.
解:(1) 的定義域?yàn)椋?sub>,1)(1,) 解析
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),且其導(dǎo)函數(shù)的圖像過原點(diǎn).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/d/f4d492.gif" style="vertical-align:middle;" />(),設(shè).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)。
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè).
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分14分)設(shè)函數(shù),.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知定義在R上的函數(shù),其中a為常數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分10分)為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
因?yàn)?sub>(其中)恒成立,所以.…………………2分
當(dāng)時(shí),在(,0)(1,)上恒成立,所以在(,1)(1,)上為增函數(shù); …………………………………4分
當(dāng)時(shí),在(,0)(0,1)(1,)上恒成立,所以在(,1)(1,)上為增函數(shù);…………………………………6分
當(dāng)時(shí),的解為:(,)(t,1)(1,+)
(其中).
所以在各區(qū)間內(nèi)的增減性如下表:區(qū)間 (,) (,t) (t,1) (1,+) 的符號(hào) + + + 的單調(diào)性 增函數(shù)
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)當(dāng)時(shí),求函數(shù)的圖像在處的切線方程;
(2)若存在,使得,求的最大值;
(1)試確定的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(2)求證:;
(3)求證:對(duì)于任意的,總存在,滿足,并確定這樣的的個(gè)數(shù).
(1)若,求函數(shù)在上的最小值;
(2)若函數(shù)在上存在單調(diào)遞增區(qū)間,試求實(shí)數(shù)的取值范圍。
(1)若在上存在單調(diào)遞增區(qū)間,求的取值范圍;
(2)當(dāng)時(shí),在上的最小值為,求在該區(qū)間上
的最大值.
(Ⅰ)當(dāng)時(shí),在上恒成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),若函數(shù)在上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ)是否存在實(shí)數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的值,若不存在,說明理由.
(I)若x=1是函數(shù)的一個(gè)極值點(diǎn),求a的值;
(II)若函數(shù)在區(qū)間(-1,0)上是增函數(shù),求a的取值范圍;
(III)若函數(shù),在x=0處取得最大值,求正數(shù)a的取值范圍.
外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成
本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)
滿足兩個(gè)關(guān)系:①C(x)=②若不建隔熱層,每年能源消耗費(fèi)用為8萬
元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(Ⅰ)求k的值及f(x)的表達(dá)式; (4分)
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)