【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=BC,點M為棱A1B1的中點.
求證:(1)AB∥平面A1B1C;
(2)平面C1CM⊥平面A1B1C.
【答案】(1)見解析;(2)見解析
【解析】
(1)證明四邊形AA1B1B是平行四邊形,得出AB∥A1B1,故而AB∥平面A1B1C;
(2)由C1M⊥A1B1,CC1⊥B1A1,得出B1A1⊥平面C1CM,從而平面C1CM⊥平面A1B1C.
證明:(1)∵AA1∥BB1,AA1=BB1,
∴四邊形AA1B1B是平行四邊形,
∴AB∥A1B1,
又AB平面A1B1C,A1B1平面A1B1C,
∴AB∥平面A1B1C.
(2)由(1)證明同理可知AC=A1C1,BC=B1C1,
∵AB=BC,∴A1B1=B1C1,
∵M是A1B1的中點,
∴C1M⊥A1B1,
∵CC1⊥平面A1B1C1,B1A1平面A1B1C1,
∴CC1⊥B1A1,
又CC1∩C1M=C1,
∴B1A1⊥平面C1CM,
又B1A1平面A1B1C1,
∴平面C1CM⊥平面A1B1C.
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了至月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
晝夜溫差 | ||||||
就診人數(shù)(個) | 16 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是月與月的兩組數(shù)據(jù),請根據(jù)至月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓的右頂點為,上頂點為.已知橢圓的焦距為,直線的斜率為.
(1)求橢圓的標準方程;
(2)設(shè)直線()與橢圓交于,兩點,且點在第二象限.與延長線交于點,若的面積是面積的倍,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),,其中a,.
Ⅰ求的極大值;
Ⅱ設(shè),,若對任意的,恒成立,求a的最大值;
Ⅲ設(shè),若對任意給定的,在區(qū)間上總存在s,,使成立,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com