已知圓C的方程為x2+y2+2x-7=0,圓心C關(guān)于原點(diǎn)對(duì)稱的點(diǎn)為A,P是圓上任一點(diǎn),線段AP的垂直平分線l交PC于點(diǎn)Q.
(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡L的方程;
(2)過(guò)點(diǎn)B(1,)能否作出直線l2,使l2與軌跡L交于M、N兩點(diǎn),且點(diǎn)B是線段MN的中點(diǎn),若這樣的直線l2存在,請(qǐng)求出它的方程和M、N兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】分析:(1)由點(diǎn)Q是線段AP的垂直平分線l與CP的交點(diǎn),可得|QP|=QA|.又,可得.利用橢圓的定義可知點(diǎn)Q的軌跡L為橢圓;
(2)假設(shè)直線l2存在,設(shè)M(x1,y1),N(x2,y2),分別代入,利用“點(diǎn)差法”、中點(diǎn)坐標(biāo)公式及斜率公式即可得出直線l2的方程;與橢圓方程聯(lián)立即可解得交點(diǎn)坐標(biāo).
解答:解:(1)如圖,由已知圓C的方程x2+y2+2x-7=0,化為(x+1)2+y2=8,可得圓心C(-1,0),半徑,點(diǎn)A(1,0).
∵點(diǎn)Q是線段AP的垂直平分線l與CP的交點(diǎn),∴|QP|=QA|.
又∵,∴
∴點(diǎn)Q的軌跡是以O(shè)為中心,C,A為焦點(diǎn)的橢圓,
,∴,
∴點(diǎn)Q的軌跡L的方程為
(2)假設(shè)直線l2存在,設(shè)M(x1,y1),N(x2,y2),分別代入,
兩式相減得,即
由題意,得x1+x2=2,y1+y2=1,
,即kMN=-1.
∴直線l2的方程為
得6x2-12x+5=0.
∵點(diǎn)B在橢圓L內(nèi),
∴直線l2的方程為,它與軌跡L存在兩個(gè)交點(diǎn),
解方程6x2-12x+5=0得
當(dāng)時(shí),;當(dāng)時(shí),
所以,兩交點(diǎn)坐標(biāo)分別為
點(diǎn)評(píng):本題綜合考查了橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì)、“點(diǎn)差法”、中點(diǎn)坐標(biāo)公式、直線與橢圓相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立得到一元二次方程等基礎(chǔ)知識(shí),考查了推理能力、數(shù)形結(jié)合的思想方法、計(jì)算能力、分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2+4x-2y=0,經(jīng)過(guò)點(diǎn)P(-4,-2)的直線l與圓C相交所得到的弦長(zhǎng)為2,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山二模)已知圓C的方程為x2+y2+2x-2y+1=0,當(dāng)圓心C到直線kx+y+4=0的距離最大時(shí),k的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2=r2,在圓C上經(jīng)過(guò)點(diǎn)P(x0,y0)的切線方程為x0x+y0y=r2.類比上述性質(zhì),則橢圓
x2
4
+
y2
12
=1
上經(jīng)過(guò)點(diǎn)(1,3)的切線方程為
x+y-4=0
x+y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2-2x+ay+1=0,且圓心在直線2x-y-1=0.
(1)求圓C的標(biāo)準(zhǔn)方程.
(2)若P點(diǎn)坐標(biāo)為(2,3),求圓C的過(guò)P點(diǎn)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2=4,過(guò)點(diǎn)M(2,4)作圓C的兩條切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過(guò)橢圓T:
x2
a2
+
y2
b2
(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)是否存在斜率為
1
2
的直線l與曲線C交于P、Q兩不同點(diǎn),使得
OP
OQ
=
5
2
(O為坐標(biāo)原點(diǎn)),若存在,求出直線l的方程,否則,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案