已知,同時滿足以下兩個條件:

;②成立,

則實數(shù)a的取值范圍是

A.                              B.

C.                    D.

 

【答案】

C

【解析】

試題分析:結(jié)合已知條件,由于函數(shù),結(jié)合指數(shù)函數(shù)與二次函數(shù)圖像可知要滿足題意,開口向下,a,0,,則二次函數(shù)的大根和小根要滿足的條件,以及指數(shù)函數(shù)在函數(shù)值異號,可知滿足題意的a的范圍是,故選C

考點:本試題考查了函數(shù)圖像與命題的綜合運用。

點評:解決該試題的關(guān)鍵是理解滿足的兩個條件,一個是全稱命題,一個是特稱命題,因此只要結(jié)合指數(shù)函數(shù)的圖像和二次函數(shù)圖像可知,要滿足題意,得到關(guān)于根的位置的確定即可,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)定理:函數(shù)g(x)=ax+
b
x
(a、b是正常數(shù))在區(qū)間(0,
b
a
)
上為減函數(shù),在區(qū)間(
b
a
,+∞)
上為增函數(shù).參考該定理,解決下面問題:是否存在實數(shù)m同時滿足以下兩個條件:①不等式f(x)-
m
2
>0
恒成立;②方程f(x)-m=0有解.若存在,試求出實數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)對定義在[0,1]上,并且同時滿足以下兩個條件的函數(shù)f(x)稱為G函數(shù).
①對任意的x∈[0,1],總f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2成立.
已知函數(shù)g(x)=x2與h(x)=a&•2x-1是定義在[0,1]上的函數(shù).
(1)試問函數(shù)g(x)是否為G函數(shù)?并說明理由;
(2)若函數(shù)h(x)是G函數(shù),求實數(shù)a的值;
(3)在(2)的條件下,討論方程g(2x-1)+h(x)=m(m∈R)解的個數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)已知f(x)=a(x+2a)(x-a-3),g(x)=2-x-2,同時滿足以下兩個條件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(1,+∞),f(x)•g(x)<0成立,
則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對定義在[0,1]上,并且同時滿足以下兩個條件的函數(shù)f(x)稱為G函數(shù).
①對任意的x∈[0,1],總有f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2)成立.
已知函數(shù)g(x)=x2與h(x)=a•2x-1是定義在[0,1]上的函數(shù).
(1)試問函數(shù)g(x)是否G函數(shù)?并說明理由;
(2)若函數(shù)h(x)是G函數(shù),求實數(shù)a的值;
(3)在(2)的條件下,是否存在實數(shù)m,使方程g(2x-1)+h(x)=m恰有兩解?若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案