橢圓的長軸為
為短軸一端點,若
,則橢圓的離心率為( )
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C:
的左右焦點分別為
,點B為橢圓與
軸的正半軸的交點,點P在第一象限內(nèi)且在橢圓上,且
與
軸垂直,
(1)求橢圓C的方程;
(2)設(shè)點B關(guān)于直線
的對稱點E(異于點B)在橢圓C上,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分10分)如圖,橢圓C:
的焦距為
2,離心率為
。
(1)求橢圓C的方程
(2)設(shè)
是過原點的直線,
是與
垂直相交于P點且與橢圓相交于A、B兩點的直線,
,是否存在上述直線
使
成立?若存在,求出直線
的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)設(shè)橢圓
,其相應(yīng)焦點
的準線方程為
.
(1)求橢圓
的方程;
(2)過點
作兩條互相垂直的直線分別交橢圓
于點
、
和
、
,
求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分15分)已知橢圓
的離心率為
,橢圓上任意一點到右焦點
的距離的最大值為
。
(I)求橢圓的方程;
(II)已知點
是
線段
上一個動點(
為坐標原點),是否存在過點
且與
軸不垂直的直線
與橢圓交于
、
兩點,使得
,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
的離心率是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若
P是以
為焦點的橢圓
上的一點,且
,則此橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若橢圓
的左焦點F。右頂點A,上頂點B,若
,則橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知點F橢圓E:
的右焦點,點M在橢圓E上,以M為圓心的圓與x軸切于點F,與y軸交于A、B兩點,且
是邊長為2的正三角形;又橢圓E上的P、Q兩點關(guān)于直線
對稱.
(1)求橢圓E的方程;(2)當直線
過點(
)時,求直線PQ的方程;
(3)若點C是直線
上一點,且
=
,求
面積的最大值.
查看答案和解析>>