【題目】已知函數(shù)fx)=ex-2+e2-x,若實(shí)數(shù)x1、x2滿足x1x2x1+x2<4且(x1-2)(x2-2)<0,則下列結(jié)論正確的是( 。

A. B. C. D.

【答案】C

【解析】

根據(jù)題意,設(shè)tx﹣2,則yet+et,設(shè)gt)=et+et,分析可得gt)為偶函數(shù)且在(0,+∞)上增函數(shù),進(jìn)而分析可得(x1﹣2)<0<(x2﹣2),且|x1﹣2|>|x2﹣2|,據(jù)此分析可得答案.

根據(jù)題意,fx)=ex2+e2x

設(shè)tx﹣2,則yet+et,

設(shè)gt)=et+et,有g(﹣t)=et+etet+etgt),

yet+et為偶函數(shù),

當(dāng)t>0時(shí),et>1,函數(shù)yet+et在(0,+∞)上增函數(shù),

若實(shí)數(shù)x1、x2滿足x1x2,x1+x2<4且(x1﹣2)(x2﹣2)<0,

即(x1﹣2)(x2﹣2)<0且(x1﹣2)+(x2﹣2)<0,

則有(x1﹣2)<0<(x2﹣2),且|x1﹣2|>|x2﹣2|,

|t1|>|t2|,則有gt1)>gt2),

fx1)>fx2);

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為, 為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程和離心率;

(Ⅱ)設(shè)點(diǎn),動點(diǎn)在橢圓上,且軸的右側(cè),線段的垂直平分線軸相交于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱柱的正(主)視圖和側(cè)(左)視圖如圖所示,設(shè),的中心分別為, ,現(xiàn)將此三棱柱繞直線旋轉(zhuǎn),射線旋轉(zhuǎn)所成角為弧度(可以取到任意一個(gè)實(shí)數(shù)),對應(yīng)的俯視圖的面積為,則函數(shù)的最大值為__________,最小正周期為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|﹣|x+2|.
(1)求不等式f(x)>0的解集;
(2)若存在x0∈R,使得f(x0)+2a2<4a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)gx)=ax2-2ax+1+ba>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記fx)=g(|x|).

(1)求實(shí)數(shù)ab的值;

(2)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,記A為此幾何體所有棱的長度構(gòu)成的集合,則(

A.3∈A
B.5∈A
C.2 ∈A
D.4 ∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高三畢業(yè)班甲、乙兩名同學(xué)在連續(xù)的8次數(shù)學(xué)周練中,統(tǒng)計(jì)解答題失分的莖葉圖如下:

(1)比較這兩名同學(xué)8次周練解答題失分的均值和方差的大小,并判斷哪位同學(xué)做解答題相對穩(wěn)定些;
(2)以上述數(shù)據(jù)統(tǒng)計(jì)甲、乙兩名同學(xué)失分超過15分的頻率作為頻率,假設(shè)甲、乙兩名同學(xué)在同一次周練中失分多少互不影響,預(yù)測在接下來的2次周練中,甲、乙兩名同學(xué)失分均超過15分的次數(shù)X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是兩條不同的直線, 是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,則 ②若,則

③若,則 ④若,則

其中正確命題的序號是( )

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), .

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)如果不等式對于一切的恒成立,求的取值范圍;

3)證明:不等式對于一切的恒成立.

查看答案和解析>>

同步練習(xí)冊答案